DEM modeling of wave propagation through jointed rock mass

Author(s):  
J Zhu
2011 ◽  
Vol 71 (2) ◽  
pp. 231-234 ◽  
Author(s):  
Cengiz Kurtuluş ◽  
Maral Üçkardeş ◽  
Umut Sarı ◽  
Ş. Onur Güner

2011 ◽  
Vol 230-232 ◽  
pp. 251-255 ◽  
Author(s):  
Zhe Ming Zhu

Joints can reflect and transmit stress waves, thus joints affect rock fracturing, and accordingly they could affect blasting efficiency. In this paper, numerical and experimental investigations have been implemented and the effect of joints on wave propagation and rock fracturing has been discussed. A dynamic numerical model of jointed rock mass has been established by using finite difference method. The simulation results show that as joints are parallel to wave propagation, the corresponding rock damage zones increase. Blasting experiments by using artificial joints have been carried out. Generally the experimental results agree with our numerical results.


2021 ◽  
Vol 11 (17) ◽  
pp. 7873
Author(s):  
Qian Dong ◽  
Xinping Li ◽  
Yongsheng Jia ◽  
Jinshan Sun

The initial stresses have a strong effect on the mechanical behavior of underground rock masses, and the initial stressed rock masses are usually under strong dynamic disturbances such as blasting and earthquakes. The influence mechanism of a blasting excavation on underground rock masses can be revealed by studying the propagation of stress waves in them. In this paper, the improved Mohr-Coulomb elasto-plastic constitutive model of the intact rock considering the initial damage was first established and numerically implemented in Universal Distinct Element Code (UDEC) based on the variation of the experimental stress wave velocity in the initial stressed intact rock, and the feasibility of combining the established rock constitutive model and the BB (Bandis-Barton) model which characterizes the nonlinear deformation of the joints to simulate stress waves across jointed rock masses under initial stress was validated by comparing the numerical and model test results subsequently. Finally, further parameter studies were carried out through the UDEC to investigate the effect of the initial stress, angle, and number of joints on the transmission of the blasting stress wave in the jointed rock mass. The results showed that the initial stress significantly changed the propagation of the stress waves in the jointed rock mass. When the initial stress was small, the transmission coefficients of the stress waves in the jointed rock were vulnerable to be influenced by the variation of the angle and the number of joints, while the effect of the angle and the number of joints on the stress wave propagation gradually weakened as the initial stress increased.


Sign in / Sign up

Export Citation Format

Share Document