initial stresses
Recently Published Documents


TOTAL DOCUMENTS

428
(FIVE YEARS 91)

H-INDEX

25
(FIVE YEARS 5)

2022 ◽  
Vol 23 (1) ◽  
pp. 412-423
Author(s):  
Sharis-Shazzali Shahimi ◽  
Nur Azam Abdullah ◽  
Ameen Topa ◽  
Meftah Hrairi ◽  
Ahmad Faris Ismail

A numerical investigation is conducted on a rotating engine blade subjected to a bird strike impact. The bird strike is numerically modelled as a cylindrical gelatine with hemispherical ends to simulate impact on a rotating engine blade. Numerical modelling of a rotating engine blade has shown that bird strikes can severely damage an engine blade, especially as the engine blade rotates, as the rotation causes initial stresses on the root of the engine blade. This paper presents a numerical modelling of the engine blades subjected to bird strike with porosity implemented on the engine blades to investigate further damage assessment due to this porosity effect. As porosity influences the decibel levels on a propeller blade or engine blade, the damage due to bird strikes can investigate the compromise this effect has on the structural integrity of the engine blades. This paper utilizes a bird strike simulation through an LS-Dyna Pre-post software. The numerical constitutive relations are keyed into the keyword manager where the bird’s SPH density, a 10 ms simulation time, and bird velocity of 100 m/s are all set. The blade rotates counter-clockwise at 200 rad/s with a tetrahedron mesh. The porous regions or voids along the blade are featured as 5 mm diameter voids, each spaced 5 mm apart. The bird is modelled as an Elastic-Plastic-Hydrodynamic material model to analyze the bird’s fluid behavior through a polynomial equation of state. To simulate the fluid structure interaction, the blade is modelled with Johnson-Cook Material model parameters of aluminium where the damage of the impact can be observed. The observations presented are compared to previous study of a bird strike impact on non-porous engine blades. ABSTRAK: Penyelidikan berangka telah dijalankan ke atas bilah enjin berputar tertakluk kepada impak pelanggaran burung. Pelanggaran burung tersebut telah dimodelkan secara berangka sebagai silinder gelatin dengan hujungnya berbentuk hemisfera demi mensimulasikan impaknya ke atas bilah enjin yang berputar. Pemodelan berangka bilah-bilah enjin yang berputar tersebut menunjukkan bahawa pelanggaran burung mampu menyebabkan kerosakan teruk terhadap bilah enjin terutamanya apabila bilah enjin sedang berputar oleh sebab putaran menghasilkan tekanan asal di pangkal bilah enjin. Kajian ini mengetengahkan pemodelan berangka ke atas bilah-bilah enjin tertakluk kepada pelanggaran burung terhadap bilah-bilah enjin yg mempunyai keliangan demi menyelidik dan menilai kerosakan kesan daripada keliangan tersebut. Keliangan juga mempengaruhi tahap-tahap desibel ke atas bilah kipas ataupun bilah enjin, kerosakan hasil serangan burung boleh menterjemah tahap ketahanan struktur integriti bagi bilah-bilah enjin tersebut. Penyelidikan ini mengguna pakai perisian “LS-Dyna Pre-post” untuk simulasi pelanggaran burung. Hubungan konstitutif berangka telah dimasukkan sebagai kata kunci di mana ketumpatan SPH burung, masa simulasi 10ms, dan halaju burung ditetapkan kepada 100 m/s. Bilah tersebut berputar pada 200 rad/s arah lawan jam dengan jejaring tetrahedron. Kawasan berliang atau kosong di sepanjang bilah ditetapkan diameternya kepada 5 mm, dan dijarakkan 5 mm di antara satu sama lain. Burung pula dimodelkan sebagai material “Elastic-Plastic-Hydrodynamic” untuk mengkaji sifat bendalir burung melalui persamaan polinomial. Demi mensimulasi interaksi struktur bendalir, bilah tersebut dimodelkan sebagai parameter aluminium material “Johnson Cook” di mana kerosakan daripada impak tersebut dapat diteliti. Penelitian-penelitian tersebut dibandingkan dengan kajian terdahulu ke atas serangan burung terhadap bilah-bilah enjin tidak berliang.


2022 ◽  
Vol 70 (2) ◽  
pp. 3021-3030
Author(s):  
Mahmoud M. Selim ◽  
Khaled A. Gepreel

Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2044
Author(s):  
Petr Kral ◽  
Jiri Dvorak ◽  
Vaclav Sklenicka ◽  
Zenji Horita ◽  
Yoichi Takizawa ◽  
...  

High-pressure sliding (HPS) and rotary swaging (RS) at room temperature were used to form severely deformed microstructures in martensitic creep-resistant P92 steel. The deformed microstructures contained markedly different ratios of low- and high-angle grain boundaries (LAGBs/HAGBs). The application of the RS method, with an imposed equivalent strain of 1.4, led to the formation of a heterogeneous microstructure with a high number of LAGBs, while the HPS method, with an imposed equivalent strain of 7.8, led to the formation of a relatively homogeneous ultrafine-grained microstructure with a significant predominance of HAGBs. Microstructure analyses after creep testing showed that the microstructure of RS- and HPS-processed P92 steel is quite stable, but a slight coarsening of subgrains and grains during creep testing can be observed. Constant load tensile creep tests at 500 °C and initial stresses ranging from 300 to 900 MPa revealed that the specimens processed by HPS exhibited higher creep strength (slower minimum creep rate) and ductility compared to the coarse-grained and RS-processed P92 steel. However, the HPS-processed P92 steel also exhibited lower values of stress exponent n than the other investigated states of P92 steel. For this reason, the differences in minimum creep rates determined for different states decrease with decreasing values of applied stress, and at applied stresses lower than 500 MPa, the creep resistance of the RS-processed state is higher than the creep resistance of the HPS-processed state.


Author(s):  
Chandani Kumari ◽  
Santimoy Kundu ◽  
Manisha Maity ◽  
Shishir Gupta

The present study is devoted to investigate the traversal of shear horizontal wave (SH-waves) in an initial-stressed fluid saturated porous stratum bounded between an initial-stressed magneto-elastic upper stratum and an initial-stressed elastic substrate. We have obtained the exact solution of the governing equations and explained in detail for various effective parameters. The displacement relation is developed with the help of Maxwell’s fundamental equations and Maxwell’s tensor. The impact of diverse parameters such as initial stress, porosity, magneto-elasticity, thickness ratio of attenuation coefficient and phase velocity of SH-wave has been discussed extensively by means of graphical depictions. Results indicate that such parameters possess a great positive impact on attenuation coefficient. This model contains a huge potential to deal with many commercial and industrial applications in Geo-technical, earthquake engineering and Geophysics.


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5802
Author(s):  
Yixun Wang ◽  
Kazushi Ueda ◽  
Ryota Nagao ◽  
Seiichiro Tsutsumi

The existing methods of assessing the fatigue life of welded joints fail to consider local strain ranges and mean stress at the weld toe. The present work proposes a novel approach to assessing the fatigue life of welded joints by conducting measurements with digital image correlation (DIC) and X-ray diffraction (XRD) in combination. Local strain ranges at the weld toe of gusset welded joints were measured by DIC. Hammer peening was conducted on the welded joints to introduce different initial stresses. The influence of mean stress was investigated by considering initial residual stress measured by XRD and a perfect plastic material model. The fatigue experiment was carried out on specimens with and without hammer peening. The results showed that hammer peening could offset adverse welding deformation effectively, and introduce significant residual compressive stress. The fatigue failure life increased by more than 15 times due to hammer peening. The fatigue initiation life assessed by the proposed method was close to that based on nominal stress, indicating that the proposed method is reliable for predicting the fatigue initiation life of welded joints.


2021 ◽  
Vol 2068 (1) ◽  
pp. 012019
Author(s):  
Lan Cui ◽  
Qian Sheng ◽  
Zhenzhen Niu

Abstract This study considers that the support time is quantitatively determined by the production limit of the displacement reduction factor and the support force under the extrusion conditions of the strain-softening rock mass. Therefore, the two indicators of the downlines under the support time are the displacement reduction factor of the support force and the yield limit. Based on the solution of the fictitious pressure proposed in an existing paper, the finite difference method is adopted to investigate the variations of the support force and displacement reduction factor versus the delayed distance considering different support types, initial stresses, and post-peak behaviours. The results show that on the one hand, the delay distance is suggested within 1 R0 in most tunnel cases; on the other hand, the factors have greater impact on rock-support interactions are rock mass and in-situ stress. Relatively contrast, softening and expansion behavior was not significant enough. Furthermore, it is also very important in composite support systems to assess the proportion of loads shared with the weakest part.


Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5279
Author(s):  
Arkadiusz Bednarz ◽  
Wojciech Zbigniew Misiolek

The work presents the results of numerical fatigue analysis of a turbine engine compressor blade, taking into account the values of initial stresses resulting from surface treatment-shot-peening. The values of the residual stresses were estimated experimentally using X-ray diffraction. The paper specifies the values of the residual stresses on both sides of the blade and their reduction due to cutting through the blade-relaxation. The obtained values of the residual stresses were used as initial stresses in the numerical fatigue analysis of the damaged compressor blade, which was subjected to resonant vibrations of known amplitude. Numerical fatigue ε-N life analysis was based on several fatigue material models: Manson’s, Mitchell’s, Baumel-Seeger’s, Muralidharan-Manson’s, Ong’s, Roessle-Fatemi’s, and Median’s, and also on the three models of cyclic hardening: Manson’s, Xianxin’s, and Fatemi’s. Because of this approach, it was possible to determine the relationship between the selection of the fatigue material ε-N model and the cyclic hardening model on the results of the numerical fatigue analysis. Additionally, the calculated results were compared with the results of experimental research, which allowed for a substantive evaluation of the obtained results. These results are of great scientific and practical importance. The problem of determining the fatigue life of blades with defects operating under resonance vibrations is one of the original tasks in the field of fracture mechanics and experimental mechanics. The results obtained are of great importance in the aviation industry and can be used during engine maintenance and inspections to assess the suitability of blades with defects in terms of the needs of further work. This aspect of engineering maintenance is of great importance from the aircraft safety point of view.


2021 ◽  
Vol 11 (17) ◽  
pp. 7873
Author(s):  
Qian Dong ◽  
Xinping Li ◽  
Yongsheng Jia ◽  
Jinshan Sun

The initial stresses have a strong effect on the mechanical behavior of underground rock masses, and the initial stressed rock masses are usually under strong dynamic disturbances such as blasting and earthquakes. The influence mechanism of a blasting excavation on underground rock masses can be revealed by studying the propagation of stress waves in them. In this paper, the improved Mohr-Coulomb elasto-plastic constitutive model of the intact rock considering the initial damage was first established and numerically implemented in Universal Distinct Element Code (UDEC) based on the variation of the experimental stress wave velocity in the initial stressed intact rock, and the feasibility of combining the established rock constitutive model and the BB (Bandis-Barton) model which characterizes the nonlinear deformation of the joints to simulate stress waves across jointed rock masses under initial stress was validated by comparing the numerical and model test results subsequently. Finally, further parameter studies were carried out through the UDEC to investigate the effect of the initial stress, angle, and number of joints on the transmission of the blasting stress wave in the jointed rock mass. The results showed that the initial stress significantly changed the propagation of the stress waves in the jointed rock mass. When the initial stress was small, the transmission coefficients of the stress waves in the jointed rock were vulnerable to be influenced by the variation of the angle and the number of joints, while the effect of the angle and the number of joints on the stress wave propagation gradually weakened as the initial stress increased.


Author(s):  
Arkadiusz Bednarz ◽  
Wojciech Z. Misiolek

The work presents the results of numerical fatigue analysis of a turbine engine compressor blade, taking into account the values of initial stresses resulting from surface treatment - shot-peening. The values of the residual stresses were estimated experimentally using X-ray diffraction. The paper specifies the values of the residual stresses on both sides of the blade and their reduction due to the cutting through the blade - relaxation. The obtained values of the residual stresses were used as initial stresses in the numerical fatigue analysis of the damaged compressor blade, which is subjected to resonant vibrations of known amplitude. Numerical fatigue ε-N life analysis was based on the several fatigue material models: Manson’s, Mitchell’s, Baumel-Seeger’s, Muralidharan-Manson’s, Ong’s, Roessle-Fatemi’s and Median’s, and also on the three models of cyclic hardening: Manson’s, Xianxin’s, and Fatemi’s. Because of this approach, it was possible to determine the relationship between the selection of the fatigue material ε-N model and the cyclic hardening model on the results of the numerical fatigue analysis. Additionally, the calculated results were compared with the results of experimental research, which allowed for a substantive evaluation of the obtained results. These results are of great scientific and practical importance. The problem of determining the fatigue life of blades with defects operating under resonance vibrations is one of the original tasks in the field of fracture mechanics and experimental mechanics. The results obtained are of great importance in the aviation industry and can be used during engine maintenance and inspections to assess the suitability of blades with defects in terms of the needs of further work. This aspect of engineering maintenance is of great importance from the aircraft safety point of view.


Sign in / Sign up

Export Citation Format

Share Document