Stability analysis of rock caverns under different in-situ stress using the DDA based hydro-mechanical coupled model

Author(s):  
H Chen ◽  
Z Zhao ◽  
L Choo ◽  
J Sun
2001 ◽  
Vol 41 (1) ◽  
pp. 609
Author(s):  
X. Chen ◽  
C.P. Tan ◽  
C.M. Haberfield

To prevent or minimise wellbore instability problems, it is critical to determine the optimum wellbore profile and to design an appropriate mud weight program based on wellbore stability analysis. It is a complex and iterative decisionmaking procedure since various factors, such as in-situ stress regime, material strength and poroelastic properties, strength and poroelastic anisotropies, initial and induced pore pressures, must be considered in the assessment and determination.This paper describes the methodology and procedure for determination of optimum wellbore profile and mud weight program based on rock mechanics consideration. The methodology is presented in the form of guideline charts and the procedure of applying the methodology is described. The application of the methodology and procedure is demonstrated through two field case studies with different in-situ stress regimes in Australia and Indonesia.


SPE Journal ◽  
2018 ◽  
Vol 23 (04) ◽  
pp. 1019-1038 ◽  
Author(s):  
Feifei Zhang ◽  
Yongfeng Kang ◽  
Zhaoyang Wang ◽  
Stefan Miska ◽  
Mengjiao Yu ◽  
...  

Summary This paper identifies wellbore-stability concerns caused by transient swab/surge pressures during deepwater-drilling tripping and reaming operations. Wellbore-stability analysis that couples transient swab/surge wellbore-pressure oscillations and in-situ-stress field oscillations in the near-wellbore (NWB) zone in deepwater drilling is presented. A transient swab/surge model is developed by considering drillstring components, wellbore structure, formation elasticity, pipe elasticity, fluid compressibility, fluid rheology, and the flow between wellbore and formation. Real-time pressure oscillations during tripping/reaming are obtained. On the basis of geomechanical principles, in-situ stress around the wellbore is calculated by coupling transient wellbore pressure with swab/surge pressure, pore pressure, and original formation-stress status to perform wellbore-stability analysis. By applying the breakout failure and wellbore-fracture failure in the analysis, a work flow is proposed to obtain the safe-operating window for tripping and reaming processes. On the basis of this study, it is determined that the safe drilling-operation window for wellbore stability consists of more than just fluid density. The oscillation magnitude of transient wellbore pressure can be larger than the frictional pressure loss during the normal-circulation process. With the effect of swab/surge pressure, the safe-operating window can become narrower than expected. The induced pore pressure decreases monotonically as the radial distance increases, and it is limited only to the NWB region and dissipates within one to two hole diameters away from the wellbore. This study provides insight into the integration of wellbore-stability analysis and transient swab/surge-pressure analysis, which is discussed rarely in the literature. It indicates that tripping-induced transient-stress and pore-pressure changes can place important impacts on the effective-stress clouds for the NWB region, which affect the wellbore-stability status significantly.


Sign in / Sign up

Export Citation Format

Share Document