- Prime Numbers and Public-Key Cryptosystems

2014 ◽  
pp. 564-593
2018 ◽  
pp. 563-588
Author(s):  
Krishna Asawa ◽  
Akanksha Bhardwaj

With the emergence of technological revolution to host services over Internet, secure communication over World Wide Web becomes critical. Cryptographic protocols are being in practice to secure the data transmission over network. Researchers use complex mathematical problem, number theory, prime numbers etc. to develop such cryptographic protocols. RSA and Diffie Hellman public key crypto systems have proven to be secure due to the difficulty of factoring the product of two large primes or computing discrete logarithms respectively. With the advent of quantum computers a new paradigm shift on public key cryptography may be on horizon. Since superposition of the qubits and entanglement behavior exhibited by quantum computers could hold the potential to render most modern encryption useless. The aim of this chapter is to analyze the implications of quantum computing power on current public key cryptosystems and to show how these cryptosystems can be restructured to sustain in the new computing paradigm.


Author(s):  
Krishna Asawa ◽  
Akanksha Bhardwaj

With the emergence of technological revolution to host services over Internet, secure communication over World Wide Web becomes critical. Cryptographic protocols are being in practice to secure the data transmission over network. Researchers use complex mathematical problem, number theory, prime numbers etc. to develop such cryptographic protocols. RSA and Diffie Hellman public key crypto systems have proven to be secure due to the difficulty of factoring the product of two large primes or computing discrete logarithms respectively. With the advent of quantum computers a new paradigm shift on public key cryptography may be on horizon. Since superposition of the qubits and entanglement behavior exhibited by quantum computers could hold the potential to render most modern encryption useless. The aim of this chapter is to analyze the implications of quantum computing power on current public key cryptosystems and to show how these cryptosystems can be restructured to sustain in the new computing paradigm.


Author(s):  
Keith M. Martin

In this chapter, we introduce public-key encryption. We first consider the motivation behind the concept of public-key cryptography and introduce the hard problems on which popular public-key encryption schemes are based. We then discuss two of the best-known public-key cryptosystems, RSA and ElGamal. For each of these public-key cryptosystems, we discuss how to set up key pairs and perform basic encryption and decryption. We also identify the basis for security for each of these cryptosystems. We then compare RSA, ElGamal, and elliptic-curve variants of ElGamal from the perspectives of performance and security. Finally, we look at how public-key encryption is used in practice, focusing on the popular use of hybrid encryption.


Author(s):  
Gaurav Mittal ◽  
Sunil Kumar ◽  
Shiv Narain ◽  
Sandeep Kumar

Author(s):  
RANI SIROMONEY ◽  
K. G. SUBRAMANIAN ◽  
P. J. ABISHA

Language theoretic public key cryptosystems for strings and pictures are discussed. Two methods of constructing public key cryptosystems for the safe transmission or storage of chain code pictures are presented; the first one encrypts a chain code picture as a string and the second one as a two-dimensional array.


1985 ◽  
Vol 4 (4) ◽  
pp. 297-308 ◽  
Author(s):  
Józef P. Pieprzyk ◽  
Dominik A. Rutkowski

Sign in / Sign up

Export Citation Format

Share Document