Space Charge in Solid Dielectrics

Author(s):  
Zhengyi Han ◽  
George Chen ◽  
Junzheng Cao ◽  
Zhiyuan He ◽  
Haitian Wang ◽  
...  

Purpose The pulsed electro-acoustic (PEA) method is widely applied for space charge measurement in solid dielectrics. The signals, however, can be seriously distorted during transmission, especially in non-planar specimens. The aim of this work is to find an efficient algorithm to correctly recover the space charge profile for different types of specimens. Design/methodology/approach The distortion can be associated with both geometry and material (attenuation and dispersion). Hence the recovery algorithm consists of two parts respectively. The influences of geometries, causing the divergences of electric force and acoustic waveform, can be corrected by sets of factors. The attenuation and dispersion of the material can be suppressed based on the transfer function matrix in frequency domain, which could be obtained from calibration. Findings A general algorithm applicable to three kinds of specimens (single-layer, multi-layer and coaxial-geometry dielectrics) has been proposed. Compared with the other two algorithms in literature, the present one offers the most accurate solution while taking relatively shorter time. In addition, this algorithm is applied on signals measured from a planar LDPE sample and the results show that the new algorithm is fairly effective with excellent stability in a real system. Originality/value As one of the most accurate algorithms, the present one is theoretically one third quicker than the others. This algorithm would be helpful in applications calling for large calculations, i.e. 3-D imaging of space charge distribution in XLPE cable.


2005 ◽  
Vol 889 ◽  
Author(s):  
George Chen ◽  
Su Han Loi

ABSTRACTPresent study aims to develop a clear insight on factors that influence space charge dynamics in solid dielectrics through a numerical simulation. The model used for the simulation is proposed by Alison and Hill [1] which describes charge dynamics as a result of bipolar transport with single level trapping. In this model, a constant mobility and no detrapping have been assumed. The simulation results show that carrier mobility, trapping coefficient and Schottky barrier have a significant effect on the space charge dynamics. Many features of space charge profiles observed by experiments have been revealed in despite of over simplistic model. More importantly, the simulation allows us to study the role of each individual parameter in the formation of space charge in solid dielectrics, so that the experimental results can be better understood.


Sign in / Sign up

Export Citation Format

Share Document