double charge
Recently Published Documents


TOTAL DOCUMENTS

493
(FIVE YEARS 47)

H-INDEX

35
(FIVE YEARS 4)

Author(s):  
Francesco Cappuzzello ◽  
Clementina Agodi ◽  
Luciano Calabretta ◽  
Daniela Calvo ◽  
Diana Carbone ◽  
...  

NUMEN proposes an innovative technique to access the nuclear matrix elements entering the expression of the lifetime of the double beta decay by cross-section measurements of heavy-ion induced Double Charge Exchange (DCE) reactions. Despite the fact that the two processes, namely neutrinoless double beta decay and DCE reactions, are triggered by the weak and strong interaction respectively, important analogies are suggested. The basic point is the coincidence of the initial and final state many-body wave functions in the two types of processes and the formal similarity of the transition operators. The main experimental tools for this project are the K800 Superconducting Cyclotron and MAGNEX spectrometer at the INFN-LNS laboratory. However, the tiny values of DCE cross-sections and the resolution requirements demand beam intensities much higher than those manageable with the present facility. The on-going upgrade of the INFN-LNS facilities promoted by the POTLNS * project in this perspective is intimately connected to the NUMEN project. This paper describes the solutions proposed as a result of the R&D activity performed during the recent years. The goal is to develop suitable technologies allowing for the measurements of DCE cross-section under extremely high beam intensities. * PIR01_00005 — potenziamento dell’infrastruttura di ricerca Laboratori Nazionali del Sud per la produzione di fasci di ioni ad alta intensitá.


Author(s):  
Xuemei Zhang ◽  
Yuanli Wu ◽  
Zhigang Xie ◽  
Chaosong Kong ◽  
Zhizong Tian

The ice-breaking process of the double-layer charge at a depth of 150 cm underwater is simulated by LS-DYNA. This paper analyzes the load type, shock wave pressure characteristics and propagation behavior of the double-layer charge during underwater explosion. By analyzing the impact of the shock wave pressure in the water under different charge intervals and time intervals on the shock wave pressure of the double charge, it is concluded that the peak pressure of the double charge explosion shock wave is jointly determined by the double charge. In this range, the second peak pressure value of the drug is greater than the pressure value of the first peak of the drug, and the attenuation is slow; the delay time of the upper charge has little effect on the peak pressure value of the shock wave in the water; the delay time is higher than that of the lower charge Initiation, at the same position, the total pressure peak of the shock wave formed by the delay of the upper charge is larger.


Author(s):  
Juan Angel de Gracia Triviño ◽  
Mårten S. G. Ahlquist

AbstractIntermolecular radical coupling (also interaction of two metal centers I2M) is one of the main mechanisms for O–O bond formation in water oxidation catalysts. For Ru(bda)L2 (H2bda = 2,2′-bipyridine-6,6′-dicarboxylate, L = pyridine or similar nitrogen containing heterocyclic ligands) catalysts a significant driving force in water solution is the hydrophobic effects driven by the solvent. The same catalyst has been successfully employed to generate N2 from ammonia, also via I2M, but here the solvent was acetonitrile where hydrophobic effects are absent. We used a classical force field for the key intermediate [RuVIN(bda)(py)2]+ to simulate the dimerization free energy by calculation of the potential mean force, in both water and acetonitrile to understand the differences and similarities. In both solvents the complex dimerizes with similar free energy profiles. In water the complexes are essentially free cations with limited ion paring, while in acetonitrile the ion-pairing is much more significant. This ion-pairing leads to significant screening of the charges, making dimerization possible despite lower solvent polarity that could lead to repulsion between the charged complexes. In water the lower ion pairing is compensated by the hydrophobic effect leading to favorable dimerization despite repulsion of the charges. A hypothetical doubly charged [RuVIIN(bda)py2]2+ was also studied for deeper understanding of the charge effect. Despite the double charge the complexes only dimerized favorably in the lower dielectric solvent acetonitrile, while in water the separated state is more stable. In the doubly charged catalyst the effect of ion-pairing is even more pronounced in acetonitrile where it is fully paired similar to the 1+ complex, while in water the separation of the ions leads to greater repulsion between the two catalysts, which prevents dimerization. Graphic Abstract


2021 ◽  
pp. 104691
Author(s):  
V. Soukeras ◽  
F. Cappuzzello ◽  
D. Carbone ◽  
M. Cavallaro ◽  
C. Agodi ◽  
...  

Author(s):  
Francesco Cappuzzello ◽  
Luis Acosta ◽  
Clementina Agodi ◽  
Ismail Boztosun ◽  
Giuseppe A. Brischetto ◽  
...  

The goal of NUMEN project is to access experimentally driven information on Nuclear Matrix Elements (NME) involved in the neutrinoless double beta decay (0νββ) by accurate measurements of the cross sections of heavy-ion induced double charge-exchange reactions. In particular, the (18O, 18Ne) and (20Ne, 20O) reactions are adopted as tools for β+β+ and β−β− decays, respectively. The experiments are performed at INFN–Laboratory Nazionali del Sud (LNS) in Catania using the Superconducting Cyclotron to accelerate the beams and the MAGNEX magnetic spectrometer to detect the reaction products. The measured cross sections are very low, limiting the present exploration to few selected isotopes of interest in the context of typically low-yield experimental runs. In order to make feasible a systematic study of all the candidate nuclei, a major upgrade of the LNS facility is foreseen to increase the experimental yield by more than two orders of magnitude. To this purpose, frontier technologies are being developed for both the accelerator and the detection systems. An update description of the NUMEN project is presented here, focusing on recent achievements from the R&D activity.


Sign in / Sign up

Export Citation Format

Share Document