charge accumulation
Recently Published Documents


TOTAL DOCUMENTS

875
(FIVE YEARS 235)

H-INDEX

48
(FIVE YEARS 8)

2022 ◽  
Vol 24 (1) ◽  
Author(s):  
Artem Shylo ◽  
Igor Danilenko ◽  
Oksana Gorban ◽  
Oleksandr Doroshkevich ◽  
Igor Nosolev ◽  
...  

Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 171
Author(s):  
Martin Rejhon ◽  
Vaclav Dedic ◽  
Roman Grill ◽  
Jan Franc ◽  
Utpal N. Roy ◽  
...  

We performed a gradual low-temperature annealing up to 360 K on a CdZnTeSe radiation detector equipped with gold and indium electrodes under bias at both polarities. We observed significant changes in the detector’s resistance and space-charge accumulation. This could potentially lead to the control and improvement of the electronic properties of the detector because the changes are accompanied with the reduction in the bulk dark current and surface leakage current. In this article, we present the results of a detailed study of the internal electric field and conductivity changes in CdZnTeSe detector for various annealing steps under bias taking into account different polarities during annealing and subsequent characterization. We observed that low-temperature annealing results in an increase in the barrier height at the contacts that, in general, reduces the dark current and decreases the positive space charge present in the sample compared to the pre-annealed condition.


Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4354
Author(s):  
Hongtao Jiang ◽  
Junguo Gao ◽  
Xiaohong Zhang ◽  
Ning Guo

Low density polyethylene (LDPE) is a good insulating material which is widely used in cable materials due to its excellent insulation and processability. However, in the DC high voltage environment, pure polyethylene materials still face many problems, the most serious of which is space charge accumulation. The cable will inevitably be subjected to tensile stress during production, installation and operation. Therefore, it is of great significance to study the effect of stretching on the microstructure and space charge characteristics for polymers and their composites. In this paper, MMT/LDPE micro-composites, SiO2/LDPE nano-composites and MMT-SiO2/LDPE micro-nano-composites were prepared by melt blending. Mechanical stretching was carried out on pure LDPE materials and the above three kinds of composite materials. Each material was stretched according to four stretching ratios, which are 0%, 5%, 10% and 20%. The crystal morphology was observed by polarizing microscope (PLM), the crystallization perfection was tested by differential scanning calorimetry (DSC), and the space charge distribution inside each sample was measured by pulsed electro-acoustic (PEA) method. At the same time, the average charge density and apparent charge mobility for samples during depolarization were calculated and analyzed. The experimental results show that when the pure low density polyethylene sample is not stretched, its crystal structure is loose. Tensile stress can make the loose molecular chains align in LDPE and improve its crystalline structure, which is helpful to restrain the accumulation of space charge inside the sample. For MMT/LDPE, SiO2/LDPE and MMT-SiO2/LDPE composites, their internal crystal structure is compact. Stretching will destroy their original crystal structure at first, and then disorder molecular chains inside the three composite materials. With the increase of stretching ratio, the molecular chains begin to orient along the direction of force, the crystallization tends to be perfect gradually, and the space charge accumulation in samples also decreases. From the calculation results of apparent charge mobility for each sample, with the increase of stretching ratio, the trap depth and trap density inside samples firstly increased and then decreased.


Author(s):  
Chenxu Wang ◽  
Guanjun Zhang ◽  
Bo Zhang ◽  
Yuhao Sun ◽  
Yanan Peng ◽  
...  

Abstract The flashover performance of insulating materials plays an important role in the development of high-voltage insulation systems. In this paper, silicone rubber(SIR) is modified by CF4 radio frequency capacitively coupled plasma(CCP) for the improvement of surface insulation performance. The discharge mode and active particles of CCP are diagnosed by the digital single lens reflex and spectrometer. Scanning electron microscopy and X-ray photoelectron spectroscopy is used for the surface physicochemical properties of samples, while the surface charge dissipation, charge accumulation measurement and flashover test are applied for the surface electrical characteristics. Experimental results show that the fluorocarbon groups can be grafted and the surface roughness increase after plasma treatment. Besides, the surface charge dissipation is decelerated and the positive charge accumulation is obviously inhibited for the treated samples. Furthermore, the surface flashover voltage can be increased by 26.67% after 10-minute treatment. It is considered that strong electron affinity of C-F and increased surface roughness can contribute to deepen surface traps, which not only inhibits the development of secondary electron emission avalanche, but also alleviates the surface charge accumulation and finally improve the surface flashover voltage of SIR.


2021 ◽  
Vol 22 (4) ◽  
pp. 644-654
Author(s):  
H.M. Kolkovska ◽  
B.I. Rachiy ◽  
P.I. Kolkovskyi ◽  
I.P. Yaremiy ◽  
N.Ya. Ivanichok ◽  
...  

In this work, the electrochemical behavior of LaMnO3 perovskite material and nanoporous carbon material in an aqueous solution of lithium sulfate are studied. The regularities of the expediency of the joint functioning of these materials as electrodes for a hybrid electrochemical capacitor are determined. It was found that the value of the specific capacity of the investigated electrochemical system of LaMnO3 / electrolyte / AC is 52 F/g during the discharge of the system to 1 V and the value of specific energy is 112.1 J /g at a discharge current of 1 mA.


2021 ◽  
Author(s):  
Robert Green-Warren ◽  
Luc Bontoux ◽  
Noah McAllister ◽  
Dylan Kovacevich ◽  
Asaad Shaikh ◽  
...  

Electrospray deposition (ESD) is a versatile micro/nano coating technology that utilizes the competition between surface charge of a droplet and its surface tension to create monodisperse generations of micro/nano droplets. ESD can deposit uniform thin films by including dilute solutes in these droplets. One mode of ESD, self-limiting electrospray deposition (SLED), has been shown to exist when glassy polymers are sprayed in a volatile solvent below the polymer glass transition temperature (Tg). This leads to charge accumulation on the coating surface that slows the growth of the film thickness. Since solutes can be easily blended in dilute ESD solutions, we investigate the SLED limits of self-limiting and non-self-limiting solute blends. As a motivating application, we focus on mechanical properties of the film. Specifically, we blend self-limiting polystyrene (PS) and SU-8 epoxy resin with different non-self-limiting mechanical modifiers, such as plasticizers and curing agents. To characterize the resulting morphologies and mechanical properties, we employ scanning electron microscopy and nanoindentation of as received and smoothed films. The results illustrate the formation of composited polymers that exhibit self-limiting ability by SLED, depending on the interaction between the two components. Further, mechanical properties could be effectively fine-tuned within these compositional ranges. This signifies the 3D coating capabilities through SLED can be implemented incorporating additional functionalities and properties beyond the base matrix.


Sign in / Sign up

Export Citation Format

Share Document