Attenuation and dispersion of compressional elastic waves due to wave-induced flow in random porous media

Author(s):  
Boris Gurevich ◽  
Tobias Müller
2020 ◽  
Vol 60 (1) ◽  
pp. 315
Author(s):  
Jimmy X. Li ◽  
Reza Rezaee ◽  
Tobias M. Müller ◽  
Mohammad Sarmadivaleh

Elastic waves have widely been used as a non-destructive probing method in oilfield exploration and development, and the most well-known applications are in seismic exploration and borehole sonic logging. For waves in porous media, it is popular to use the Biot theory, which incorporates the wave-induced global flow, accounting for the frictional attenuation. The Biot theory assumes that the fluid is wetting to the solid matrix. However, the fluid is not always wetting the rock in real reservoirs. It was previously revealed that a non-wetting fluid parcel tends to slip on the solid wall pore boundary where the intermolecular potential between the fluid and solid wall is weaker than in wetting fluid conditions. This particular slippage feature means that the coupling relationship between the fluid and solid frame and frictional dissipation is likely to be very different between non-wetting and wetting fluid situations. We characterise this wave-induced slippage using an apparent viscosity for the non-wetting fluid within the thin viscous boundary layer. This apparent viscosity is smaller than the viscosity of the bulk fluid. We demonstrate that the slip correction affects the dynamic permeability and dynamic tortuosity and results in slippage/wettability dependent phase velocities and attenuation of the fully fluid-saturated rock.


Geophysics ◽  
2010 ◽  
Vol 75 (5) ◽  
pp. 75A147-75A164 ◽  
Author(s):  
Tobias M. Müller ◽  
Boris Gurevich ◽  
Maxim Lebedev

One major cause of elastic wave attenuation in heterogeneous porous media is wave-induced flow of the pore fluid between heterogeneities of various scales. It is believed that for frequencies below [Formula: see text], the most important cause is the wave-induced flow between mesoscopic inhomogeneities, which are large compared with the typical individual pore size but small compared to the wavelength. Various laboratory experiments in some natural porous materials provide evidence for the presence of centimeter-scale mesoscopic heterogeneities. Laboratory and field measurements of seismic attenuation in fluid-saturated rocks provide indications of the role of the wave-induced flow. Signatures of wave-induced flow include the frequency and saturation dependence of P-wave attenuation and its associated velocity dispersion, frequency-dependent shear-wave splitting, and attenuation anisotropy. During the last four decades, numerous models for attenuation and velocity dispersion from wave-induced flow have been developed with varying degrees of rigor and complexity. These models can be categorized roughly into three groups ac-cording to their underlying theoretical framework. The first group of models is based on Biot’s theory of poroelasticity. The second group is based on elastodynamic theory where local fluid flow is incorporated through an additional hydrodynamic equation. Another group of models is derived using the theory of viscoelasticity. Though all models predict attenuation and velocity dispersion typical for a relaxation process, there exist differences that can be related to the type of disorder (periodic, random, space dimension) and to the way the local flow is incorporated. The differences manifest themselves in different asymptotic scaling laws for attenuation and in different expressions for characteristic frequencies. In recent years, some theoretical models of wave-induced fluid flow have been validated numerically, using finite-difference, finite-element, and reflectivity algorithms applied to Biot’s equations of poroelasticity. Application of theoretical models to real seismic data requires further studies using broadband laboratory and field measurements of attenuation and dispersion for different rocks as well as development of more robust methods for estimating dissipation attributes from field data.


Geophysics ◽  
2007 ◽  
Vol 72 (5) ◽  
pp. E149-E158 ◽  
Author(s):  
Tobias M. Müller ◽  
Gracjan Lambert ◽  
Boris Gurevich

In inhomogeneous porous media, the mechanism of wave-induced fluid flow causes significant attenuation and dispersion of seismic waves. In connection with this phenomenon, we study the impact of spatial permeability fluctuations on the dynamic behavior of porous materials. This heterogeneous permeability distribution further complicates the ongoing efforts to extract flow permeability from seismic data. Based on the method of statistical smoothing applied to Biot’s equations of poroelasticity, we derive models for the dynamic-equivalent permeability in 1D and 3D randomly inhomogeneous media. The low-frequency limit of this permeability corresponds to the flow permeability governing fluid flow in porous media. We incorporate the dynamic-equivalent permeability model into the expressions for attenuation and dispersion of P-waves, also obtained by the method of smoothing. The resulting attenuation and dispersion model is confirmed by numerical computations in randomly layered poroelastic structures. The results suggest that the effect of wave-induced fluid flow can be observed in a broader frequency range than previously thought. The peak attenuation shifts along the frequency axis depending on the strength of the permeability fluctuations. We conclude that estimation of flow permeability from seismic attenuation is only possible if permeability fluctuations are properly accounted for.


2018 ◽  
Vol 97 (4) ◽  
Author(s):  
Marise J. E. Westbroek ◽  
Gil-Arnaud Coche ◽  
Peter R. King ◽  
Dimitri D. Vvedensky

2003 ◽  
Vol 30 (4) ◽  
pp. 271-288 ◽  
Author(s):  
J.J. Telega ◽  
W.R. Bielski

2016 ◽  
Vol 93 (1) ◽  
Author(s):  
C. Jin ◽  
P. A. Langston ◽  
G. E. Pavlovskaya ◽  
M. R. Hall ◽  
S. P. Rigby

Sign in / Sign up

Export Citation Format

Share Document