The influence of the test properties on dynamic crack propagation in filled rubbers by simultaneous tensile- and pure-shear-mode testing

2009 ◽  
pp. 345-349 ◽  
Author(s):  
G Heinrich ◽  
R Stoèek ◽  
M Gehde
1994 ◽  
Vol 47 (1S) ◽  
pp. S132-S140 ◽  
Author(s):  
G. Frantziskonis

The paper reports an analytical study on the properties of fracture networks in brittle materials. Micro-deformation gradients are considered random fields and/or scaling fields. Under dynamic crack propagation conditions the possibly fractal properties of the (macro) crack pattern are governed by the interplay of fluctuations and spatial correlations. For “slow” crack propagation they are governed by the kinematic fields in the vicinity of crack or notch tips. The spatial distribution of dissipated energy, due to fracture, is evaluated. It is shown that there is a strong possibility that the dissipated energy is multifractal. Here, its properties are characterized in a fashion similar to the so-called p-model where p herein denotes normalized dissipated energy. For the three cases analyzed - uniaxial tension, pure shear, and dilatation - the dissipated energy under pure shear shows the strongest disorder, the one under dilatation the weakest, and the tension case is always between these two.


2012 ◽  
Vol 36 (5) ◽  
pp. 651-657 ◽  
Author(s):  
Jun Lei ◽  
Yue-Sheng Wang ◽  
Yifeng Huang ◽  
Qingsheng Yang ◽  
Chuanzeng Zhang

1998 ◽  
Vol 539 ◽  
Author(s):  
T. Cramer ◽  
A. Wanner ◽  
P. Gumbsch

AbstractTensile tests on notched plates of single-crystalline silicon were carried out at high overloads. Cracks were forced to propagate on {110} planes in a <110> direction. The dynamics of the fracture process was measured using the potential drop technique and correlated with the fracture surface morphology. Crack propagation velocity did not exceed a terminal velocity of v = 3800 m/s, which corresponds to 83%7 of the Rayleigh wave velocity vR. Specimens fractured at low stresses exhibited crystallographic cleavage whereas a transition from mirror-like smooth regions to rougher hackle zones was observed in case of the specimens fractured at high stresses. Inspection of the mirror zone at high magnification revealed a deviation of the {110} plane onto {111} crystallographic facets.


PAMM ◽  
2007 ◽  
Vol 7 (1) ◽  
pp. 1090801-1090802
Author(s):  
A.-M. Sändig ◽  
A. Lalegname ◽  
S. Nicaise

Author(s):  
B. Prabel ◽  
S. Marie ◽  
A. Combescure

In the frame of analysis of the pressure thermal shock in a PWR RVP and the associated R&D activities, some developments are performed at CEA on the dynamic brittle propagation and crack arrest. This paper presents a PhD work on the modeling of the dynamic brittle crack growth. For the analyses, an important experimental work is performed on different geometries using a French RPV ferritic steel: Compact Tension specimens with different thickness, isothermal rings under compression with different positions of the initial defect to study a mixed mode configuration, and a ring submitted to thermal shock. The first part of this paper details the test conditions and main results. To propose an accurate interpretation of the crack growth, a viscous-elastic-plastic dynamic model is used. The strain rate influence is taken into account based on Cowper-Symond’s law (characterization was made from Split Hopkinson Pressure Bar tests). To model the crack propagation in the Finite Element calculation, eXtended Finite Element Method (X-FEM) is used. The implementation of these specific elements in the CEA F.E. software CAST3M is described in the second part of this paper. This numerical technique avoids re-meshing, because the crack progress is directly incorporated in the degrees of freedom of the elements crossed by the crack. The last part of this paper compares the F.E. predictions to the experimental measurements using different criteria. In particular, we focused on a RKR (Ritchie-Knott-Rice) like criterion using a critical principal stress in the front of the crack tip during the dynamic crack extension. Critical stress is found to depend on crack speed, or equivalently on strain rate. Good results are reported concerning predictive simulations.


Sign in / Sign up

Export Citation Format

Share Document