crack propagation process
Recently Published Documents


TOTAL DOCUMENTS

101
(FIVE YEARS 28)

H-INDEX

11
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Yi Luo ◽  
Chenhao Pei ◽  
Dengxing Qu ◽  
Xinping Li ◽  
Ruiqiu Ma ◽  
...  

Abstract To explore the distribution of cracks in anchored caverns under the blast load, cohesive elements with zero thickness were employed to simulate crack propagation through numerical analysis based on a similar model test. Furthermore, the crack propagation process in anchored caverns under top explosion was analysed and the distribution and mode of propagation of cracks in anchored caverns when a fracture with different dip angles was present in the vault were discussed. With the propagation of the explosive stress waves, cracks successively occur at the boundary of the anchored zone of the vault, arch foot, and floor of the anchored caverns. Tensile cracks are preliminarily found in rocks surrounding the caverns. In the case that a pre-fabricated fracture is present in the upper part of the vault, the number of cracks at the boundary of the anchored zone of the vault decreases, then increases with increasing dip angle of the pre-fabricated fracture. The fewest cracks at the boundary of the anchored zone occur if the dip angle of the pre-fabricated fracture is 45º. The wing cracks deflected to the vault are formed at the tip of the pre-fabricated fracture, around which tensile and shear cracks are synchronously present. Under top explosion, both the peak displacement and peak particle velocity in surrounding rocks of anchored caverns reach their maximum values at the vault, successively followed by the side wall and the floor. In addition, they show asymmetry with the difference of the dip angle of the pre-fabricated fracture; the vault displacement of anchored caverns is mainly attributed to the formation of tensile cracks at the boundary of the anchored zone generated due to tensile waves reflected from the free face of the vault. When a fracture is present in the vault, the peak displacement of the vault decreases while the residual displacement increases.


2021 ◽  
Vol 2101 (1) ◽  
pp. 012027
Author(s):  
Juan Zhang ◽  
Wenming She ◽  
Wei Zhou ◽  
Wenya Yang ◽  
Jicheng Wei ◽  
...  

Abstract A calculation method of damage tolerance of stiffened structure based on extended finite element method (XFEM) is proposed.The crack propagation process is divided into small intervals to calculate the amplitude of stress intensity factor of the structure under different crack lengths. Each small interval is integrated to calculate the crack growth life. The accuracy of the method is verified by calculating the stress intensity factor, the load at both ends and crack growth life. The flat slab structure model with different numbers of stiffeners is established. The above calculation method shows that the stiffeners can share the load for the structure, reduce the amplitude of stress intensity factor, increase the fatigue life.The more the number of stiffeners, the more obvious the improvement effect. The equivalent treatment of the stiffened structure was conducted, and the equal area widening model, unfolding model and thickening model were established. The calculation results show that the calculation results of expansion model is very close to the stiffened structure. It shows that the stiffeners share the load for the structure by increasing the local thickness of the area, reduce the amplitude of stress intensity factor and improve the fatigue intensity.


Author(s):  
Serhii Yakushchenko ◽  
Mykola Brailo ◽  
Andriy Buketov ◽  
Anna Sapronova ◽  
Oleksandr Sapronov ◽  
...  

The influence of the aggressive environments of river water, seawater, oil petrol and sodium hydroxide on the impact strength of epoxy-polyester composite was investigated. Testing was conducted by two different methods. It was determined that the impact strength of specimens that were kept at air was W' = 4.2 kJ/m2 (by the second method - W'' = 7.0 kJ/m2). The energy spent on destruction of the control specimen was E = 0.92 J. The main regularities of the crack propagation process in the studied material were found and qualitatively described. The time of a crack propagation (τ = 0.16 μs) was determined. The maximum load, which leads to destruction of the specimen was P max = 2.47 kN. The comparative analysis of investigated specimens was conducted by the IR-spectroscopy method. It was found, that the biggest decrease in material properties was observed for the specimen that was kept in the petrol environment.


Vibration ◽  
2021 ◽  
Vol 4 (3) ◽  
pp. 700-721
Author(s):  
Magdalena Mieloszyk

The paper presents the analysis of the possibility of fatigue crack detection and monitoring its propagation process using fibre Bragg grating (FBG) sensors. The investigations were carried out on an aluminium alloy sample (a part of the Mi-2 helicopter rotor blade). During the fatigue test, the sample was equipped with FBG sensors applied for strain measurement and the vibration-based strain monitoring. It was observed that the strain curves determined by the FBG sensors agreed well with the fatigue force profile. However, the strain curves were almost insensitive to the crack propagation process, except in the last stage of the test, when the crack length was equal to 25 mm. The strain values and the natural frequencies of the sample that were determined experimentally were compared with the values achieved from the finite element method model, with both methods showing good agreement. Additionally, spectrogram-based analyses were performed, focused on the acoustic waves phenomena related to a crack propagation process. It was confirmed that the proposed signal processing method, based on spectrogram analyses, can be applied for the detection of fatigue crack development in metal structures.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4303
Author(s):  
Edmundo R. Sérgio ◽  
Fernando V. Antunes ◽  
Micael F. Borges ◽  
Diogo M. Neto

Fatigue is one of the most prevalent mechanisms of failure. Thus, the evaluation of the fatigue crack growth process is fundamental in engineering applications subjected to cyclic loads. The fatigue crack growth rate is usually accessed through the da/dN-ΔK curves, which have some well-known limitations. In this study a numerical model that uses the cyclic plastic strain at the crack tip to predict da/dN was coupled with the Gurson–Tvergaard–Needleman (GTN) damage model. The crack propagation process occurs, by node release, when the cumulative plastic strain reaches a critical value. The GTN model is used to account for the material degradation due to the growth of micro-voids process, which affects fatigue crack growth. Predictions with GTN are compared with the ones obtained without this ductile fracture model. Crack closure was studied in order to justify the lower values of da/dN obtained in the model with GTN, when compared with the results without GTN, for lower ΔK values. Finally, the accuracy of both variants of the numerical model is accessed through the comparison with experimental results.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2275
Author(s):  
Yue Hu ◽  
Jun Zhu ◽  
Jihui Wang ◽  
Yibo Wu

In this paper, the use of a customized automatic reinforcement stitching equipment was demonstrated. The stitching of foam sandwich composite preforms was achieved to obtain structures with improved interfacial properties. The effect of different stitching spacings on the crack propagation process in glass fiber reinforced plastics (GFRP)/foam sandwich composite interfaces was examined by Mode-I Cracked Sandwich Beam (CSB) fracture tests. The load–displacement curve, the crack propagation process, and the release rate of critical strain energy were analyzed. The CSB fracture test results show that the stitching treatment with different stitching spacings increase the peak load and fracture displacement. Furthermore, it was found that the mechanism of crack propagation is changed by the stitching process. The release rates of the critical strain energy in specimens with 0- and 10-mm stitch spacings were evenly distributed, with an average of 0.961 kJ/m2 and 1.667 kJ/m2, respectively, while the release rates of critical strain energy in specimens with 6-mm and 8-mm stitch spacings were linearly distributed. The CSB fracture tests confirmed that the best suture spacing was 8 mm. Based on these results, the mechanism of crack propagation and the toughening mechanism of the resin column could be revealed.


Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1290
Author(s):  
Matías Braun ◽  
Josué Aranda-Ruiz ◽  
José Fernández-Sáez

The fracture behavior of polymeric materials has been widely studied in recent years, both experimentally and numerically. Different numerical approaches have been considered in the study of crack propagation processes, from continuum-based numerical formulations to discrete models, many of the latter being limited in the selection of the Poisson’s coefficient of the considered material. In this work, we present a numerical and experimental analysis of the crack propagation process of polymethylmethacrylate beams with central and eccentric notches subjected to quasi-static three-point bending tests. The developed discrete numerical model consists of a regular triangular lattice model based on axial and normal interaction springs, accounting for nearest-neighbor interactions. The proposed model allows solving the above mentioned limitation in the selection of Poisson’s coefficient, incorporating a fracture criterion defined by a bilinear law with softening that includes the fracture energy in the formulation and allows considering a progressive damage. One of the main objectives of this work is to show the capacity of this lattice to simulate quasi-static fracture problems. The obtained results show that the proposed lattice model is capable of providing results close to the experimental ones in terms of crack pattern, peak load and initial stiffening.


Sign in / Sign up

Export Citation Format

Share Document