Dynamic crack propagation in matrix involving inclusions by a time-domain BEM

2012 ◽  
Vol 36 (5) ◽  
pp. 651-657 ◽  
Author(s):  
Jun Lei ◽  
Yue-Sheng Wang ◽  
Yifeng Huang ◽  
Qingsheng Yang ◽  
Chuanzeng Zhang
2006 ◽  
Vol 324-325 ◽  
pp. 319-322
Author(s):  
Yue Sheng Wang ◽  
Jun Lei ◽  
Dietmar Gross

The paper considers a bi-material with a crack propagating rapidly, penetrating or deflecting at the interface under dynamic loading. The hybrid time-domain boundary element method, together with the multi-region technique, is applied to simulate the dynamic process of propagation and penetration or deflection of the crack. Moving of the crack tip in the matrix, penetration and deflection of the crack at the interface, and propagation of the crack along the interface are controlled by criteria developed from the quasi-static ones. A bi-material rectangular plate with an edged crack under impact loading is computed and compared with the photoelastic experiments. Good agreement between numerical and experimental results implies that the present boundary element numerical method can provide an excellent simulation for the dynamic crack propagation in a bi-material involving interfaces.


1998 ◽  
Vol 539 ◽  
Author(s):  
T. Cramer ◽  
A. Wanner ◽  
P. Gumbsch

AbstractTensile tests on notched plates of single-crystalline silicon were carried out at high overloads. Cracks were forced to propagate on {110} planes in a <110> direction. The dynamics of the fracture process was measured using the potential drop technique and correlated with the fracture surface morphology. Crack propagation velocity did not exceed a terminal velocity of v = 3800 m/s, which corresponds to 83%7 of the Rayleigh wave velocity vR. Specimens fractured at low stresses exhibited crystallographic cleavage whereas a transition from mirror-like smooth regions to rougher hackle zones was observed in case of the specimens fractured at high stresses. Inspection of the mirror zone at high magnification revealed a deviation of the {110} plane onto {111} crystallographic facets.


PAMM ◽  
2007 ◽  
Vol 7 (1) ◽  
pp. 1090801-1090802
Author(s):  
A.-M. Sändig ◽  
A. Lalegname ◽  
S. Nicaise

Author(s):  
B. Prabel ◽  
S. Marie ◽  
A. Combescure

In the frame of analysis of the pressure thermal shock in a PWR RVP and the associated R&D activities, some developments are performed at CEA on the dynamic brittle propagation and crack arrest. This paper presents a PhD work on the modeling of the dynamic brittle crack growth. For the analyses, an important experimental work is performed on different geometries using a French RPV ferritic steel: Compact Tension specimens with different thickness, isothermal rings under compression with different positions of the initial defect to study a mixed mode configuration, and a ring submitted to thermal shock. The first part of this paper details the test conditions and main results. To propose an accurate interpretation of the crack growth, a viscous-elastic-plastic dynamic model is used. The strain rate influence is taken into account based on Cowper-Symond’s law (characterization was made from Split Hopkinson Pressure Bar tests). To model the crack propagation in the Finite Element calculation, eXtended Finite Element Method (X-FEM) is used. The implementation of these specific elements in the CEA F.E. software CAST3M is described in the second part of this paper. This numerical technique avoids re-meshing, because the crack progress is directly incorporated in the degrees of freedom of the elements crossed by the crack. The last part of this paper compares the F.E. predictions to the experimental measurements using different criteria. In particular, we focused on a RKR (Ritchie-Knott-Rice) like criterion using a critical principal stress in the front of the crack tip during the dynamic crack extension. Critical stress is found to depend on crack speed, or equivalently on strain rate. Good results are reported concerning predictive simulations.


Sign in / Sign up

Export Citation Format

Share Document