scholarly journals Digital Image Disintegration Analysis: a Novel Quality Control Method for Fast Disintegrating Tablets

2021 ◽  
Vol 22 (7) ◽  
Author(s):  
Osamah Malallah ◽  
Zara Rashid ◽  
Chee Lok Li ◽  
Abdulmalik Alqurshi ◽  
Mohamed A. Alhanan ◽  
...  

AbstractMeasuring tablet disintegration is essential for quality control purposes; however, no established method adequately accounts for the timeframe or small volumes of the medium associated with the dissipation process for fast disintegrating tablets (FDTs) in the mouth. We hypothesised that digital imaging to measure disintegration in a low volume of the medium might discriminate between different types of FTD formulation. A digital image disintegration analysis (DIDA) was designed to measure tablet disintegration in 0.05–0.7 mL of medium. A temperature-controlled black vessel was 3D-printed to match the dimensions of each tablet under investigation. An overhead camera recorded the mean grey value of the tablet as a measure of the percentage of the formulation which remained intact as a function of time. Imodium Instants, Nurofen Meltlets and a developmental freeze-dried pilocarpine formulation were investigated. The imaging approach proved effective in discriminating the disintegration of different tablets (p < 0.05). For example, 10 s after 0.7 mL of a saliva simulant was applied, 2.0 ± 0.3% of the new pilocarpine tablet remained, whereas at the same time point, 22 ± 9% of the Imodium Instants had not undergone disintegration (temperature within the vessel was 37 ± 0.5°C). Nurofen Meltlets were observed to swell and showed a percentage recovery of 120.7 ± 2.4% and 135.0 ± 6.1% when 0.05 mL and 0.7 mL volumes were used, respectively. Thus, the new digital image disintegration analysis, DIDA, reported here effectively evaluated fast disintegrating tablets and has the potential as a quality control method for such formulations.

2021 ◽  
Vol 5 (1) ◽  
pp. 27-44
Author(s):  
Jesús Robledano Arillo

Abstract This study aims to propose a quality control method for digitized versions of manuscript documents that will be relevant for paleographical and codicological analysis. The methodology applied consisted of a systematic review of papers related to automated analysis of the physical characteristics of handwritings and document supports in the field of digital paleography, as well as of the numerous standards that have been emerging in the field of image engineering for quality assessment in digital image recordings. We also worked with a sample of 275 digital representations of pages or double pages of manuscript documentation dating to between the 12th and 17th centuries. As a result of this study, we propose a taxonomy of physical attributes of the handwritings and of their documentary supports that must be represented in the digital image with a high level of fidelity and without any distortions that could lead scholars to erroneous interpretations of the physical and formal characteristics of the original documents. On the basis of this taxonomy, we identified a set of typical distortions caused by digitization processes that can affect the recording quality of the physical attributes previously proposed, as well as a set of parameters and metrics for measuring quality that can be used to create a sufficiently exhaustive quality model. We also detected a series of limitations which, if not properly managed, can compromise the effectiveness of these types of controls.


Polymers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 340
Author(s):  
Elisa Chiodi ◽  
Francesco Damin ◽  
Laura Sola ◽  
Lucia Ferraro ◽  
Dario Brambilla ◽  
...  

The manufacture of a very high-quality microarray support is essential for the adoption of this assay format in clinical routine. In fact, poorly surface-bound probes can affect the diagnostic sensitivity or, in worst cases, lead to false negative results. Here we report on a reliable and easy quality control method for the evaluation of spotted probe properties in a microarray test, based on the Interferometric Reflectance Imaging Sensor (IRIS) system, a high-resolution label free technique able to evaluate the variation of the mass bound to a surface. In particular, we demonstrated that the IRIS analysis of microarray chips immediately after probe immobilization can detect the absence of probes, which recognizably causes a lack of signal when performing a test, with clinical relevance, using fluorescence detection. Moreover, the use of the IRIS technique allowed also to determine the optimal concentration of the probe, that has to be immobilized on the surface, to maximize the target recognition, thus the signal, but to avoid crowding effects. Finally, through this preliminary quality inspection it is possible to highlight differences in the immobilization chemistries. In particular, we have compared NHS ester versus click chemistry reactions using two different surface coatings, demonstrating that, in the diagnostic case used as an example (colorectal cancer) a higher probe density does not reflect a higher binding signal, probably because of a crowding effect.


2013 ◽  
Vol 141 (2) ◽  
pp. 798-808 ◽  
Author(s):  
Zhifang Xu ◽  
Yi Wang ◽  
Guangzhou Fan

Abstract The relatively smooth terrain embedded in the numerical model creates an elevation difference against the actual terrain, which in turn makes the quality control of 2-m temperature difficult when forecast or analysis fields are utilized in the process. In this paper, a two-stage quality control method is proposed to address the quality control of 2-m temperature, using biweight means and a progressive EOF analysis. The study is made to improve the quality control of the observed 2-m temperature collected by China and its neighboring areas, based on the 6-h T639 analysis from December 2009 to February 2010. Results show that the proposed two-stage quality control method can secure the needed quality control better, compared with a regular EOF quality control process. The new method is, in particular, able to remove the data that are dotted with consecutive errors but showing small fluctuations. Meanwhile, compared with the lapse rate of temperature method, the biweight mean method is able to remove the systematic bias generated by the model. It turns out that such methods make the distributions of observation increments (the difference between observation and background) more Gaussian-like, which ensures the data quality after the quality control.


Sign in / Sign up

Export Citation Format

Share Document