dna microarrays
Recently Published Documents


TOTAL DOCUMENTS

1302
(FIVE YEARS 46)

H-INDEX

106
(FIVE YEARS 4)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Stefan Monecke ◽  
Andrea T. Feßler ◽  
Sindy Burgold-Voigt ◽  
Henrike Krüger ◽  
Kristin Mühldorfer ◽  
...  

AbstractStaphylococcus aureus can be a harmless coloniser, but it can also cause severe infections in humans, livestock and wildlife. Regarding the latter, only few studies have been performed and knowledge on virulence factors is insufficient. The aim of the present study was to study S. aureus isolates from deceased wild beavers (Castor fiber). Seventeen isolates from eleven beavers, found in Germany and Austria, were investigated. Antimicrobial and biocide susceptibility tests were performed. Isolates were characterised using S. aureus-specific DNA microarrays, spa typing and whole-genome sequencing. From two isolates, prophages were induced by mitomycin C and studied by transmission electron microscopy. Four isolates belonged to clonal complex (CC) 8, CC12, and CC398. Twelve isolates belonged to CC1956 and one isolate was CC49. The CC49 and CC1956 isolates carried distinct lukF/S genes related to the Panton-Valentine leukocidin (PVL) from human isolates of S. aureus. These genes were located on related, but not identical, Siphovirus prophages. The beavers, from which those isolates originated, suffered from abscesses, purulent organ lesions and necrotising pneumonia, i.e., clinical manifestations resembling symptoms of severe PVL-associated disease in humans. It might thus be assumed that the “Beaver Leukocidin (BVL, lukF/S-BV)”-positive strains are beaver-specific pathogens, and further studies on their clinical role as well as on a possible transmissibility to other species, including humans, are warranted.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Baowei Li ◽  
Yanran Liu ◽  
Xiaodan Hao ◽  
Jinhua Dong ◽  
Limei Chen ◽  
...  

Abstract Background The detection and identification of single nucleotide polymorphism (SNP) is essential for determining patient disease susceptibility and the delivery of medicines targeted to the individual. At present, SNP genotyping technology includes Sanger sequencing, TaqMan-probe quantitative polymerase chain reaction (qPCR), amplification-refractory mutation system (ARMS)-PCR, and Kompetitive Allele-Specific PCR (KASP). However, these technologies have some disadvantages: the high cost of development and detection, long and time consuming protocols, and high false positive rates. Focusing on these limitations, we proposed a new SNP detection method named universal probe-based intermediate primer-triggered qPCR (UPIP-qPCR). In this method, only two types of fluorescence-labeled probes were used for SNP genotyping, thus greatly reducing the cost of development and detection for SNP genotyping. Results In the amplification process of UPIP-qPCR, unlabeled intermediate primers with template-specific recognition functions could trigger probe hydrolysis and specific signal release. UPIP-qPCR can be used successfully and widely for SNP genotyping. The sensitivity of UPIP-qPCR in SNP genotyping was 0.01 ng, the call rate was more than 99.1%, and the accuracy was more than 99.9%. High-throughput DNA microarrays based on intermediate primers can be used for SNP genotyping. Conclusion This novel approach is both cost effective and highly accurate; it is a reliable SNP genotyping method that would serve the needs of the clinician in the provision of targeted medicine.


2021 ◽  
Vol 1 ◽  
Author(s):  
Niloofar Aghaieabiane ◽  
Ioannis Koutis

High-throughput technologies such as DNA microarrays and RNA-sequencing are used to measure the expression levels of large numbers of genes simultaneously. To support the extraction of biological knowledge, individual gene expression levels are transformed to Gene Co-expression Networks (GCNs). In a GCN, nodes correspond to genes, and the weight of the connection between two nodes is a measure of similarity in the expression behavior of the two genes. In general, GCN construction and analysis includes three steps; 1) calculating a similarity value for each pair of genes 2) using these similarity values to construct a fully connected weighted network 3) finding clusters of genes in the network, commonly called modules. The specific implementation of these three steps can significantly impact the final output and the downstream biological analysis. GCN construction is a well-studied topic. Existing algorithms rely on relatively simple statistical and mathematical tools to implement these steps. Currently, software package WGCNA appears to be the most widely accepted standard. We hypothesize that the raw features provided by sequencing data can be leveraged to extract modules of higher quality. A novel preprocessing step of the gene expression data set is introduced that in effect calibrates the expression levels of individual genes, before computing pairwise similarities. Further, the similarity is computed as an inner-product of positive vectors. In experiments, this provides a significant improvement over WGCNA, as measured by aggregate p-values of the gene ontology term enrichment of the computed modules.


Polymers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3897
Author(s):  
Luka Vanjur ◽  
Thomas Carzaniga ◽  
Luca Casiraghi ◽  
Giuliano Zanchetta ◽  
Francesco Damin ◽  
...  

The physical–chemical properties of the surface of DNA microarrays and biosensors play a fundamental role in their performance, affecting the signal’s amplitude and the strength and kinetics of binding. We studied how the interaction parameters vary for hybridization of complementary 23-mer DNA, when the probe strands are immobilized on different copolymers, which coat the surface of an optical, label-free biosensor. Copolymers of N, N-dimethylacrylamide bringing either a different type or density of sites for covalent immobilization of DNA probes, or different backbone charges, were used to functionalize the surface of a Reflective Phantom Interface multispot biosensor made of a glass prism with a silicon dioxide antireflective layer. By analyzing the kinetic hybridization curves at different probe surface densities and target concentrations in solution, we found that all the tested coatings displayed a common association kinetics of about 9 × 104 M−1·s−1 at small probe density, decreasing by one order of magnitude close to the surface saturation of probes. In contrast, both the yield of hybridization and the dissociation kinetics, and hence the equilibrium constant, depend on the type of copolymer coating. Nearly doubled signal amplitudes, although equilibrium dissociation constant was as large as 4 nM, were obtained by immobilizing the probe via click chemistry, whereas amine-based immobilization combined with passivation with diamine carrying positive charges granted much slower dissociation kinetics, yielding an equilibrium dissociation constant as low as 0.5 nM. These results offer quantitative criteria for an optimal selection of surface copolymer coatings, depending on the application.


Author(s):  
Urszula Bentkowska ◽  
Jan G. Bazan ◽  
Lech Zarȩba ◽  
Jerzy Socha ◽  
Stanislawa Bazan‐Socha ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Sophie Bérubé ◽  
Tamaki Kobayashi ◽  
Amy Wesolowski ◽  
Douglas E. Norris ◽  
Ingo Ruczinski ◽  
...  

AbstractTechnical variation, or variation from non-biological sources, is present in most laboratory assays. Correcting for this variation enables analysts to extract a biological signal that informs questions of interest. However, each assay has different sources and levels of technical variation and the choice of correction methods can impact downstream analyses. Compared to similar assays such as DNA microarrays, relatively few methods have been developed and evaluated for protein microarrays, a versatile tool for measuring levels of various proteins in serum samples. Here, we propose a pre-processing pipeline to correct for some common sources of technical variation in protein microarrays. The pipeline builds upon an existing normalization method by using controls to reduce technical variation. We evaluate our method using data from two protein microarray studies, and by simulation. We demonstrate that pre-processing choices impact the fluorescent-intensity based ranks of proteins, which in turn, impact downstream analysis.1Impact StatementProtein microarrays are in wide use in cancer research, infectious disease diagnostics and biomarker identification. To inform research and practice in these and other fields, technical variation must be corrected using normalization and pre-processing. Current protein microarray studies use a variety of normalization methods, many of which were developed for DNA microarrays, and therefore are based on assumptions and data that are not ideal for protein microarrays. To address this issue, we develop, evaluate, and implement a pre-processing pipeline that corrects for technical variation in protein microarrays. We show that pre-processing and normalization directly impact the validity of downstream analysis, and protein-specific approaches are essential.


2021 ◽  
Vol 11 (10) ◽  
pp. 988
Author(s):  
Elina Alaterre ◽  
Veronika Vikova ◽  
Alboukadel Kassambara ◽  
Angélique Bruyer ◽  
Nicolas Robert ◽  
...  

Multiple myeloma (MM) is the second most frequent hematological cancer and is characterized by the clonal proliferation of malignant plasma cells. Genome-wide expression profiling (GEP) analysis with DNA microarrays has emerged as a powerful tool for biomedical research, generating a huge amount of data. Microarray analyses have improved our understanding of MM disease and have led to important clinical applications. In MM, GEP has been used to stratify patients, define risk, identify therapeutic targets, predict treatment response, and understand drug resistance. In this study, we built a gene risk score for 267 genes using RNA-seq data that demonstrated a prognostic value in two independent cohorts (n = 674 and n = 76) of newly diagnosed MM patients treated with high-dose Melphalan and autologous stem cell transplantation. High-risk patients were associated with the expression of genes involved in several major pathways implicated in MM pathophysiology, including interferon response, cell proliferation, hypoxia, IL-6 signaling pathway, stem cell genes, MYC, and epigenetic deregulation. The RNA-seq-based risk score was correlated with specific MM somatic mutation profiles and responses to targeted treatment including EZH2, MELK, TOPK/PBK, and Aurora kinase inhibitors, outlining potential utility for precision medicine strategies in MM.


2021 ◽  
Author(s):  
Stefan Monecke ◽  
Andrea T. Feßler ◽  
Sindy Burgold-Voigt ◽  
Henrike Krüger ◽  
Kristin Mühldorfer ◽  
...  

Abstract Staphylococcus aureus can be a harmless coloniser, but it can also cause severe infections in humans, livestock and wildlife. Regarding the latter, only few studies have been performed and knowledge on virulence factors is insufficient. The aim of the present study was to study S. aureus isolates from deceased wild beavers (Castor fiber). Seventeen isolates from eleven beavers, found in Germany and Austria, were investigated. Antimicrobial and biocide susceptibility tests were performed. Isolates were characterised using S. aureus-specific DNA microarrays, spa typing and whole-genome sequencing. From two isolates, prophages were induced by Mitomycin C and studied by transmission electron microscopy.Four isolates belonged to clonal complex (CC) 8, CC12, and CC398. Twelve isolates belonged to CC1956 and one isolate was CC49. The CC49 and CC1956 isolates carried distinct lukF/S genes related to the Panton-Valentine leukocidin (PVL) from human isolates of S. aureus. These genes were located on related, but not identical, Siphovirus prophages. The beavers, from which those isolates originated, suffered from abscesses, purulent organ lesions and necrotising pneumonia, i.e., clinical manifestations resembling symptoms of severe PVL-associated disease in humans. It might thus be assumed that the “Beaver Leukocidin (BVL, lukF/S-BV)”-positive strains are beaver-specific pathogens, and further studies on their clinical role as well as on a possible transmissibility to other species, including humans, are warranted.


Author(s):  
Kristina Kappel ◽  
Joanna Fafińska ◽  
Markus Fischer ◽  
Jan Fritsche

AbstractThis proof-of-principle study describes the development of a rapid and easy-to-use DNA microarray assay for the authentication of giant tiger prawns and whiteleg shrimp. Following DNA extraction and conventional end-point PCR of a 16S rDNA segment, the PCR products are hybridised to species-specific oligonucleotide probes on DNA microarrays located at the bottom of centrifuge tubes (ArrayTubes) and the resulting signal patterns are compared to those of reference specimens. A total of 21 species-specific probes were designed and signal patterns were recorded for 47 crustacean specimens belonging to 16 species of seven families. A hierarchical clustering of the signal patterns demonstrated the specificity of the DNA microarray for the two target species. The DNA microarray can easily be expanded to other important crustaceans. As the complete assay can be performed within half a day and does not require taxonomic expertise, it represents a rapid and simple alternative to tedious DNA barcoding and could be used by crustacean trading companies as well as food control authorities for authentication of crustacean commodities. Graphical abstract


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2855
Author(s):  
Emilia Frydrych-Tomczak ◽  
Tomasz Ratajczak ◽  
Łukasz Kościński ◽  
Agnieszka Ranecka ◽  
Natalia Michalak ◽  
...  

The structural characterization of glass slides surface-modified with 3-azidopropyltrimethoxysilane and used for anchoring nucleic acids, resulting in the so-called DNA microarrays, is presented. Depending on the silanization conditions, the slides were found to show different oligonucleotide binding efficiency, thus, an attempt was made to correlate this efficiency with the structural characteristics of the silane layers. Atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and X-ray reflectometry (XRR) measurements provided information on the surface topography, chemical composition and thickness of the silane films, respectively. The surface for which the best oligonucleotides binding efficiency is observed, has been found to consist of a densely-packed silane layer, decorated with a high-number of additional clusters that are believed to host exposed azide groups.


Sign in / Sign up

Export Citation Format

Share Document