scholarly journals Collective vs. single-particle motion in quantum many-body systems: Spreading and its semiclassical interpretation in the perturbative regime

2011 ◽  
Vol 96 (2) ◽  
pp. 20007 ◽  
Author(s):  
J. Hämmerling ◽  
B. Gutkin ◽  
T. Guhr
1987 ◽  
Vol 37 (3) ◽  
pp. 497-506
Author(s):  
M. C. Festeau-Barrioz ◽  
M. L. Sawley ◽  
J. Václavík

The motion of a single particle under the influence of the ponderomotive force directed perpendicular to the external magnetostatic field is analysed. By solving the exact equation of motion for a specific applied electromagnetic field, the resultant ponderomotive drift is compared with the prediction of a single-particle theory using the oscillation-centre approximation. The regime of validity of this theory is discussed. It is shown that, for certain values of the amplitude and frequency of the electromagnetic field, the particle motion is unstable and therefore the concept of a single-particle ponderomotive force is meaningless.


Open Physics ◽  
2018 ◽  
Vol 16 (1) ◽  
pp. 149-167 ◽  
Author(s):  
Andrea Prunotto ◽  
Wanda Maria Alberico ◽  
Piotr Czerski

Abstract The rooted maps theory, a branch of the theory of homology, is shown to be a powerful tool for investigating the topological properties of Feynman diagrams, related to the single particle propagator in the quantum many-body systems. The numerical correspondence between the number of this class of Feynman diagrams as a function of perturbative order and the number of rooted maps as a function of the number of edges is studied. A graphical procedure to associate Feynman diagrams and rooted maps is then stated. Finally, starting from rooted maps principles, an original definition of the genus of a Feynman diagram, which totally differs from the usual one, is given.


1979 ◽  
Vol 19 (1) ◽  
pp. 416-418 ◽  
Author(s):  
H. van Beijeren ◽  
J. R. Dorfman

2014 ◽  
Vol 28 (03) ◽  
pp. 1450046
Author(s):  
B. H. J. McKELLAR

In a particular exactly solvable model of an interacting system, the Boltzmann equation predicts a constant single particle density operator, whereas the exact solution gives a single particle density operator with a nontrivial time dependence. All of the time dependence of the single particle density operator is generated by the correlations.


1983 ◽  
Vol 314 (3) ◽  
pp. 309-316 ◽  
Author(s):  
W. Cassing ◽  
A. K. Dhar ◽  
A. Lukasiak ◽  
W. N�renberg

Sign in / Sign up

Export Citation Format

Share Document