scholarly journals Model of metameric locomotion in smooth active directional filaments with curvature fluctuations

Author(s):  
Guangle Du ◽  
Sunita Kumari ◽  
Fangfu Ye ◽  
Rudolf Podgornik

Abstract Locomotion in segmented animals, such as annelids and myriapods (centipedes and millipedes), is generated by a coordinated movement known as metameric locomotion, which can be also implemented in robots designed to perform specific tasks. We introduce a theoretical model, based on an active directional motion of the head segment and a passive trailing of the rest of the body segments, in order to formalize and study the metameric locomotion. The model is specifically formulated as a steered Ornstein-Uhlenbeck curvature process, preserving the continuity of the curvature along the whole body filament, and thus supersedes the simple active Brownian model, which would be inapplicable in this case. We obtain the probability density by analytically solving the Fokker-Planck equation pertinent to the model. We also calculate explicitly the correlators, such as the mean-square orientational fluctuations, the orientational correlation function and the mean-square separation between the head and tail segments, both analytically either via the Fokker-Planck equation or directly by either solving analytically or implementing it numerically from the Langevin equations. The analytical and numerical results coincide. Our theoretical model can help understand the locomotion of metameric animals and instruct the design of metameric robots.

Author(s):  
Ali Khalili Golmankhaneh ◽  
Saleh Ashrafi ◽  
Dumitru Baleanu ◽  
Arran Fernandez

AbstractIn this paper, we have investigated the Langevin and Brownian equations on fractal time sets using Fα-calculus and shown that the mean square displacement is not varied linearly with time. We have also generalized the classical method of deriving the Fokker–Planck equation in order to obtain the Fokker–Planck equation on fractal time sets.


1974 ◽  
Vol 2 (5) ◽  
pp. 306-307
Author(s):  
I. H. Urch

The Fokker-Planck equation has been used by a number of authors (Jokipii 1966, 1971; Hall and Sturrock 1967; Hasselmann and Wibberentz 1968; Roelof 1968) to deduce the diffusion coefficients of cosmic-ray particles in the interplanetary magnetic field. However, these calculations suggest that the diffusion of particles perpendicular to the mean magnetic field is implausibly large; so large that the validity of a Fokker-Planck approach as applied to the interplanetary medium must be doubted.


Symmetry ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 839
Author(s):  
Massimiliano Giona ◽  
Antonio Brasiello ◽  
Alessandra Adrover

This article introduces the concept of space-time inversion of stochastic Langevin equations as a way of transforming the parametrization of the dynamics from time to a monotonically varying spatial coordinate. A typical physical problem in which this approach can be fruitfully used is the analysis of solute dispersion in long straight tubes (Taylor-Aris dispersion), where the time-parametrization of the dynamics is recast in that of the axial coordinate. This allows the connection between the analysis of the forward (in time) evolution of the process and that of its exit-time statistics. The derivation of the Fokker-Planck equation for the inverted dynamics requires attention: it can be deduced using a mollified approach of the Wiener perturbations “a-la Wong-Zakai” by considering a sequence of almost everywhere smooth stochastic processes (in the present case, Poisson-Kac processes), converging to the Wiener processes in some limit (the Kac limit). The mathematical interpretation of the resulting Fokker-Planck equation can be obtained by introducing a new way of considering the stochastic integrals over the increments of a Wiener process, referred to as stochastic Stjelties integrals of mixed order. Several examples ranging from stochastic thermodynamics and fractal-time models are also analyzed.


1962 ◽  
Vol 29 (3) ◽  
pp. 483-485 ◽  
Author(s):  
S. T. Ariaratnam

The response to white noise excitation of a light elastic string loaded at equal intervals by a number of equal masses is examined using the theory of the Markov random process and the associated Fokker-Planck equation. Taking nonlinear effects due to variation in string tension into account, an exact solution of the Fokker-Planck equation is obtained and used in an approximate analytical evaluation of the mean squared response of the system.


1989 ◽  
Vol 9 (1) ◽  
pp. 109-120
Author(s):  
G. Liao ◽  
A.F. Lawrence ◽  
A.T. Abawi

2020 ◽  
Vol 23 (2) ◽  
pp. 450-483 ◽  
Author(s):  
Giacomo Ascione ◽  
Yuliya Mishura ◽  
Enrica Pirozzi

AbstractWe define a time-changed fractional Ornstein-Uhlenbeck process by composing a fractional Ornstein-Uhlenbeck process with the inverse of a subordinator. Properties of the moments of such process are investigated and the existence of the density is shown. We also provide a generalized Fokker-Planck equation for the density of the process.


Sign in / Sign up

Export Citation Format

Share Document