scholarly journals Liver-Selective Transgene Rescue of Hypothalamic-Pituitary-Adrenal Axis Dysfunction in 11β-Hydroxysteroid Dehydrogenase Type 1-Deficient Mice

Endocrinology ◽  
2007 ◽  
Vol 148 (3) ◽  
pp. 961-966 ◽  
Author(s):  
Janice M. Paterson ◽  
Megan C. Holmes ◽  
Christopher J. Kenyon ◽  
Roderick Carter ◽  
John J. Mullins ◽  
...  
2000 ◽  
Vol 7 (4) ◽  
pp. 189-194 ◽  
Author(s):  
Stéphane Liège ◽  
Elisabeth Moze ◽  
Keith W. Kelley ◽  
Patricia Parnet ◽  
Pierre J. Neveu

Endocrinology ◽  
2007 ◽  
Vol 148 (10) ◽  
pp. 5072-5080 ◽  
Author(s):  
Daniela Rogoff ◽  
Jeffrey W. Ryder ◽  
Kelli Black ◽  
Zheng Yan ◽  
Shawn C. Burgess ◽  
...  

Hexose-6-phosphate dehydrogenase (EC 1.1.1.47) catalyzes the conversion of glucose 6-phosphate to 6-phosphogluconolactone within the lumen of the endoplasmic reticulum, thereby generating reduced nicotinamide adenine dinucleotide phosphate. Reduced nicotinamide adenine dinucleotide phosphate is a necessary cofactor for the reductase activity of 11β-hydroxysteroid dehydrogenase type 1 (EC 1.1.1.146), which converts hormonally inactive cortisone to active cortisol (in rodents, 11-dehydrocorticosterone to corticosterone). Mice with targeted inactivation of hexose-6-phosphate dehydrogenase lack 11β-hydroxysteroid dehydrogenase type 1 reductase activity, whereas dehydrogenase activity (corticosterone to 11-dehydrocorticosterone) is increased. We now report that both glucose output and glucose use are abnormal in these mice. Mutant mice have fasting hypoglycemia. In mutant primary hepatocytes, glucose output does not increase normally in response to glucagon. Mutant animals have lower hepatic glycogen content when fed and cannot mobilize it normally when fasting. As assessed by RT-PCR, responses of hepatic enzymes to fasting are blunted; enzymes involved in gluconeogenesis (phosphoenolpyruvate carboxykinase, tyrosine aminotransferase) are not appropriately up-regulated, and expression of glucokinase, an enzyme required for glycolysis, is not suppressed. Corticosterone has attenuated effects on expression of these enzymes in cultured mutant primary hepatocytes. Mutant mice have increased sensitivity to insulin, as assessed by homeostatic model assessment values and by increased glucose uptake by the muscle. The hypothalamic-pituitary-adrenal axis is also abnormal. Circulating ACTH, deoxycorticosterone, and corticosterone levels are increased in mutant animals, suggesting decreased negative feedback on the hypothalamic-pituitary-adrenal axis. Comparison with other animal models of adrenal insufficiency suggests that many of the observed abnormalities can be explained by blunted intracellular corticosterone actions, despite elevated circulating levels of this hormone.


Endocrinology ◽  
2001 ◽  
Vol 142 (1) ◽  
pp. 114-120 ◽  
Author(s):  
Hayley J. Harris ◽  
Yuri Kotelevtsev ◽  
John J. Mullins ◽  
Jonathan R. Seckl ◽  
Megan C. Holmes

Abstract 11β-Hydroxysteroid dehydrogenases (11β-HSDs) catalyze interconversion of active corticosterone and inert 11-dehydrocorticosterone, thus regulating glucocorticoid access to intracellular receptors in vivo. 11β-HSD type 1 is a reductase, locally regenerating active glucocorticoids. To explore the role of this isozyme in the brain, we examined hypothalamic-pituitary-adrenal axis (HPA) regulation in mice homozygous for a targeted disruption of the 11β-HSD-1 gene. 11β-HSD-1-deficient mice showed elevated plasma corticosterone and ACTH levels at the diurnal nadir, with a prolonged corticosterone peak, suggesting abnormal HPA control and enhanced circadian HPA drive. Despite elevated corticosterone levels, several hippocampal and hypothalamic glucocorticoid-sensitive messenger RNAs were normally expressed in 11β-HSD-1-deficient mice, implying reduced effective glucocorticoid activity within neurons. 11β-HSD-1-deficient mice showed exaggerated ACTH and corticosterone responses to restraint stress, with a delayed fall after stress, suggesting diminished glucocorticoid feedback. Indeed, 11β-HSD-1-deficient mice were less sensitive to exogenous cortisol suppression of HPA activation. Thus 11β-HSD-1 amplifies glucocorticoid feedback on the HPA axis and is an important regulator of neuronal glucocorticoid exposure under both basal and stress conditions in vivo.


Sign in / Sign up

Export Citation Format

Share Document