scholarly journals The Anteroventral Bed Nucleus of the Stria Terminalis Differentially Regulates Hypothalamic-Pituitary-Adrenocortical Axis Responses to Acute and Chronic Stress

Endocrinology ◽  
2007 ◽  
Vol 149 (2) ◽  
pp. 818-826 ◽  
Author(s):  
Dennis C. Choi ◽  
Nathan K. Evanson ◽  
Amy R. Furay ◽  
Yvonne M. Ulrich-Lai ◽  
Michelle M. Ostrander ◽  
...  

The anteroventral region of the bed nucleus of the stria terminalis (BST) stimulates hypothalamic-pituitary-adrenocortical (HPA) axis responses to acute stress. However, the role of the anterior BST nuclei in chronic drive of the HPA axis has yet to be established. Therefore, this study tests the role of the anteroventral BST in physiological responses to chronic drive, using a chronic variable stress (CVS) model. Male Sprague-Dawley rats received either bilateral ibotenate lesions, targeting the anteroventral BST, or vehicle injection into the same region. Half of the lesion and control rats were exposed to a 14-d CVS paradigm consisting of twice-daily exposure to unpredictable, alternating stressors. The remaining rats were nonhandled control animals that remained in home cages. On the morning after the end of CVS exposure, all rats were exposed to a novel restraint stress challenge. CVS induced attenuated body weight gain, adrenal hypertrophy, thymic involution, and enhanced CRH mRNA in hypophysiotrophic neurons of the hypothalamic paraventricular nucleus, none of which were affected by anteroventral BST lesions. In the absence of CVS, lesions attenuated the plasma corticosterone and paraventricular nucleus c-fos mRNA responses to the acute restraint stress. In contrast, lesions of the anteroventral BST elevated plasma ACTH and corticosterone responses to novel restraint in the rats previously exposed to CVS. These data suggest that the anterior BST plays very different roles in integrating acute stimulation and chronic drive of the HPA axis, perhaps mediated by chronic stress-induced recruitment of distinct BST cell groups or functional reorganization of stress-integrative circuits.

2008 ◽  
Vol 33 (5) ◽  
pp. 659-669 ◽  
Author(s):  
Dennis C. Choi ◽  
Amy R. Furay ◽  
Nathan K. Evanson ◽  
Yvonne M. Ulrich-Lai ◽  
Mary M.N. Nguyen ◽  
...  

1987 ◽  
Vol 65 (1) ◽  
pp. 30-35 ◽  
Author(s):  
J. E. Disturnal ◽  
W. L. Veale ◽  
Q. J. Pittman

Arginine vasopresin is hypothesized to act as a neurotransmitter or neuromodulator in the ventral septal area of the rat brain. To examine this role of vasopressin further, it was applied by microiontophoresis or micropressure from multiple-barrelled micropipettes onto spontaneously active or glutamate-activated neurons. Applied in this manner, vasopressin reduced glutamate-evoked excitation in 32 of the 47 cells studied. Further, micropressure application of the vasopressin antagonist d(CH2)5Tyr(Me)AVP reversed the vasopressin effects. In contrast, administration of vasopressin had no effect on excitations evoked by acetylcholine iontophoresis or on the spontaneous activity of the majority of the ventral septal neurons studied. These observations suggest that vasopressin may be acting on a V1-like receptor on specific neurons in the ventral septal area as a modulator of glutamate actions. Evoked responses were also obtained in the same population of ventral septal cells following stimulation of a variety of limbic areas. Inhibitory input onto most of the vasopressin responsive neurons studied was obtained following electrical stimulation of the paraventricular nucleus and bed nucleus of the stria terminalis, two cell groupings that are potential sources of vasopressin to the ventral septal area. Thus, the similarity in action of exogenously applied vasopressin and the evoked responses following paraventricular nucleus and bed nucleus stimulation suggests that vasopressin may be a neurotransmitter in this pathway.


Stress ◽  
2009 ◽  
Vol 12 (3) ◽  
pp. 268-278 ◽  
Author(s):  
C. C. Crestani ◽  
F. H. F. Alves ◽  
R. F. Tavares ◽  
F. M. A. Corrêa

2021 ◽  
Vol 15 ◽  
Author(s):  
Sydney A. Rowson ◽  
Kristen E. Pleil

The paraventricular nucleus of the thalamus (PVT) is a critical neural hub for the regulation of a variety of motivated behaviors, integrating stress and reward information from environmental stimuli to guide discrete behaviors via several limbic projections. Neurons in the PVT are activated by acute and chronic stressors, however several roles of the PVT in behavior modulation emerge only following repeated stress exposure, pointing to a role for hypothalamic pituitary adrenal (HPA) axis modulation of PVT function. Further, there may be a reciprocal relationship between the PVT and HPA axis in which chronic stress-induced recruitment of the PVT elicits an additional role for the PVT to regulate motivated behavior by modulating HPA physiology and thus the neuroendocrine response to stress itself. This complex interaction may make the PVT and its role in influencing motivated behavior particularly susceptible to chronic stress-induced plasticity in the PVT, especially in females who display increased susceptibility to stress-induced maladaptive behaviors associated with neuropsychiatric diseases. Though literature is describing the sex-specific effects of acute and chronic stress exposure on HPA axis activation and motivated behaviors, the impact of sex on the role of the PVT in modulating the behavioral and neuroendocrine response to stress is less well established. Here, we review what is currently known regarding the acute and chronic stress-induced activation and behavioral role of the PVT in male and female rodents. We further explore stress hormone and neuropeptide signaling mechanisms by which the HPA axis and PVT interact and discuss the implications for sex-dependent effects of chronic stress on the PVT’s role in motivated behaviors.


2021 ◽  
Author(s):  
Nadya Povysheva ◽  
Huiyuan Zheng ◽  
Linda Rinaman

We previously reported that GABAergic neurons within the ventral anterior lateral bed nucleus of the stria terminalis (alBST) express glucagon-like peptide 1 receptor (GLP1R) in rats, and that virally-mediated <knock-down> of GLP1R expression in the alBST prolongs the hypothalamic-pituitary-adrenal axis response to acute stress. Given other evidence that a GABAergic projection pathway from ventral alBST serves to limit stress-induced activation of the HPA axis, we hypothesized that GLP1 signaling promotes activation of GABAergic ventral alBST neurons that project directly to the paraventricular nucleus of the hypothalamus (PVN). After PVN microinjection of fluorescent retrograde tracer followed by preparation of ex vivo rat brain slices, whole-cell patch clamp recordings were made in identified PVN-projecting neurons within the ventral alBST. Bath application of Exendin-4 (a specific GLP1R agonist) indirectly depolarized PVN-projecting neurons in the ventral alBST and adjacent hypothalamic parastrial nucleus (PS) via circuit-mediated effects that increased excitatory synaptic inputs and decreased inhibitory synaptic inputs to the PVN-projecting neurons; these effects were occluded by prior bath application of a GLP1R antagonist. Additional retrograde tracing experiments combined with in situ hybridization confirmed that PVN-projecting neurons within the ventral alBST/PS are GABAergic, and do not express GLP1R mRNA. Conversely, GLP1 mRNA is expressed by a subset of GABAergic neurons within the oval subnucleus of the dorsal alBST that project into the ventral alBST. Our novel findings reveal a potential GLP1R-mediated mechanism through which the alBST exerts inhibitory control over the endocrine HPA axis.


2014 ◽  
Vol 39 (11) ◽  
pp. 1903-1911 ◽  
Author(s):  
Jonathan N. Flak ◽  
Brent Myers ◽  
Matia B. Solomon ◽  
Jessica M. McKlveen ◽  
Eric G. Krause ◽  
...  

Endocrinology ◽  
2008 ◽  
Vol 149 (11) ◽  
pp. 5482-5490 ◽  
Author(s):  
Amy R. Furay ◽  
Amy E. Bruestle ◽  
James P. Herman

Previous work has implicated the forebrain glucocorticoid receptor (GR) in feedback regulation of the hypothalamic-pituitary-adrenocortical (HPA) axis. The present series of experiments used male mice with a targeted forebrain-specific GR knockout (in which forebrain includes the prefrontal cortex, hippocampus, and basolateral amygdala) to determine the role of forebrain GR in HPA axis regulation after stress. The data indicate that the forebrain GR is necessary for maintaining basal regulation of corticosterone secretion in the morning, confirming its role in HPA axis regulation. Our data further indicate that the forebrain GR is necessary for negative feedback after both mild and robust acute psychogenic stressors but not hypoxia, a systemic stressor. In contrast, forebrain-specific GR knockout and control mice exhibit equivalent HPA axis hyperactivity and facilitation after chronic variable stress, suggesting that changes in forebrain GR are not essential for chronic stress-induced pathology. These studies provide novel and definitive evidence that the forebrain GR selectively contributes negative feedback regulation of HPA axis responses to psychogenic stressors. Moreover, the data indicate that chronic stress-induced alterations in HPA axis function are mediated by mechanisms independent of the forebrain GR. Overall, the data are consistent with an essential role of the forebrain GR in coordinating endocrine responses to stimuli of a psychological origin.


Sign in / Sign up

Export Citation Format

Share Document