scholarly journals Conditional Transgenic Mice for Studying the Role of the Glucocorticoid Receptor in the Renal Collecting Duct

Endocrinology ◽  
2008 ◽  
Vol 150 (5) ◽  
pp. 2202-2210 ◽  
Author(s):  
Aurélie Nguyen Dinh Cat ◽  
Antoine Ouvrard-Pascaud ◽  
François Tronche ◽  
Maud Clemessy ◽  
Daniel Gonzalez-Nunez ◽  
...  

The mineralocorticoid receptor (MR) is a major regulator of renal sodium reabsorption and body fluid homeostasis. However, little is known about glucocorticoid receptor (GR)-dependent renal effects. Glucocorticoids may activate both receptors, so it is difficult to distinguish between MR- and GR-mediated effects in vivo. To overcome this complexity, we used a transgenic mouse model allowing conditional GR overexpression (doxycycline inducible TetON system, Hoxb7 promoter) in the renal collecting duct (CD) to identify GR-regulated genes involved in sodium transport in the CD. In microdissected cortical CD, induction of GR expression led (after 2 d of doxycycline) to increased α-epithelial sodium channel and glucocorticoid-induced leucine zipper and decreased abundance of with-no-lysine kinase 4 transcripts, without modification of Na,K-ATPase, serum- and glucocorticoid-kinase-1, or MR expression. No changes occurred in the upstream distal and connecting tubules [distal convoluted tubule (DCT), connecting tubule (CNT)]. Sodium excretion was unaltered, but the urinary aldosterone concentration was reduced, suggesting compensation of transitory extracellular volume expansion that subsequently disappeared. At steady state, i.e. after 15 d of doxycycline administration, transcript abundance remained altered in the CD, whereas mirror changes appeared in the DCT and CNT. Plasma aldosterone or glucocorticoids and blood pressure were all unaffected. These experiments show that: 1) GR, in addition to MR, controls epithelial sodium channel- and glucocorticoid-induced leucine zipper expression in vivo in the CD; 2) with-no-lysine kinase 4 is negatively controlled by GR; and 3) the DCT and CNT compensate for these alterations to maintain normal sodium reabsorption and blood pressure. These results suggest that enhanced GR expression may contribute to enhanced sodium retention in some pathological situations.

2020 ◽  
Vol 31 (5) ◽  
pp. 1009-1023 ◽  
Author(s):  
Ali Sassi ◽  
Yubao Wang ◽  
Alexandra Chassot ◽  
Olga Komarynets ◽  
Isabelle Roth ◽  
...  

BackgroundWater and solute transport across epithelia can occur via the transcellular or paracellular pathways. Tight junctions play a key role in mediating paracellular ion reabsorption in the kidney. In the renal collecting duct, which is a typical absorptive tight epithelium, coordination between transcellular sodium reabsorption and paracellular permeability may prevent the backflow of reabsorbed sodium to the tubular lumen along a steep electrochemical gradient.MethodsTo investigate whether transcellular sodium transport controls tight-junction composition and paracellular permeability via modulating expression of the transmembrane protein claudin-8, we used cultured mouse cortical collecting duct cells to see how overexpression or silencing of epithelial sodium channel (ENaC) subunits and claudin-8 affect paracellular permeability. We also used conditional kidney tubule–specific knockout mice lacking ENaC subunits to assess the ENaC’s effect on claudin-8 expression.ResultsOverexpression or silencing of the ENaC γ-subunit was associated with parallel and specific changes in claudin-8 abundance. Increased claudin-8 abundance was associated with a reduction in paracellular permeability to sodium, whereas decreased claudin-8 abundance was associated with the opposite effect. Claudin-8 overexpression and silencing reproduced these functional effects on paracellular ion permeability. Conditional kidney tubule–specific ENaC γ-subunit knockout mice displayed decreased claudin-8 expression, confirming the cell culture experiments' findings. Importantly, ENaC β-subunit or α-subunit silencing or kidney tubule–specific β-ENaC or α-ENaC knockout mice did not alter claudin-8 abundance.ConclusionsOur data reveal the specific coupling between ENaC γ-subunit and claudin-8 expression. This coupling may play an important role in preventing the backflow of reabsorbed solutes and water to the tubular lumen, as well as in coupling paracellular and transcellular sodium permeability.


2018 ◽  
Vol 315 (1) ◽  
pp. F151-F160 ◽  
Author(s):  
Gitte R. Hinrichs ◽  
Jannie S. Michelsen ◽  
Rikke Zachar ◽  
Ulla G. Friis ◽  
Per Svenningsen ◽  
...  

Albuminuria predicts adverse renal outcome in kidney transplant recipients. The present study addressed the hypothesis that albuminuria is associated with increased urine serine proteases with the ability to activate the epithelial sodium channel (ENaC) and with greater extracellular volume and higher blood pressure. In a cross-sectional design, kidney transplant recipients with ( n = 18) and without ( n = 19) albuminuria were included for office blood pressure measurements, estimation of volume status by bioimpedance, and collection of spot urine and plasma samples. Urine was analyzed for serine proteases and for the ability to activate ENaC current in vitro. Urine exosome protein was immunoblotted for prostasin and γ-ENaC protein. In the present study, it was found that, compared with nonalbuminuria (8.8 mg/g creatinine), albuminuric (1,722 mg/g creatinine) kidney transplant recipients had a higher systolic and diastolic blood pressure, despite receiving significantly more antihypertensives, and a greater urinary total plasminogen, active plasmin, active urokinase-type plasminogen activator, and prostasin protein abundance, which correlated significantly with u-albumin. Fluid overload correlated with systolic blood pressure, urinary albumin/creatinine, and plasminogen/creatinine. Urine from albuminuric kidney transplant recipients evoked a greater amiloride- and aprotinin-sensitive inward current in single collecting duct cells (murine cell line M1). γENaC subunits at 50 and 75 kDa showed increased abundance in urine exosomes from albuminuric kidney transplant recipients when compared with controls. These findings show that albuminuria in kidney transplant recipients is associated with hypertension, ability of urine to proteolytically activate ENaC current, and increased abundance of γENaC. ENaC activity could contribute to hypertension and adverse outcome in posttransplant proteinuria.


2006 ◽  
Vol 290 (5) ◽  
pp. F1055-F1064 ◽  
Author(s):  
Jian Song ◽  
Xinqun Hu ◽  
Shahla Riazi ◽  
Swasti Tiwari ◽  
James B. Wade ◽  
...  

Hyperinsulinemia is associated with hypertension. Dysregulation of renal distal tubule sodium reabsorption may play a role. We evaluated the regulation of the epithelial sodium channel (ENaC) and the thiazide-sensitive Na-Cl cotransporter (NCC) during chronic hyperinsulinemia in rats and correlated these changes to blood pressure as determined by radiotelemetry. Male Sprague-Dawley rats (∼270 g) underwent one of the following three treatments for 4 wk ( n = 6/group): 1) control; 2) insulin-infused plus 20% dextrose in drinking water; or 3) glucose water-drinking (20% dextrose in water). Mean arterial pressures were increased by insulin and glucose (mmHg at 3 wk): 98 ± 1 (control), 107 ± 2 (insulin), and 109 ± 3 (glucose), P < 0.01. Insulin (but not glucose) increased natriuretic response to benzamil (ENaC inhibitor) and hydrochlorothiazide (NCC inhibitor) on average by 125 and 60%, respectively, relative to control rats, suggesting increased activity of these reabsorptive pathways. Neither insulin nor glucose affected the renal protein abundances of NCC or the ENaC subunits (α, β, and γ) in kidney cortex, outer medulla, or inner medulla in a major way, as determined by immunoblotting. However, insulin and to some extent glucose increased apical localization of these subunits in cortical collecting duct principal cells, as determined by immunoperoxidase labeling. In addition, insulin decreased cortical “with no lysine” kinase (WNK4) abundance (by 16% relative to control), which may have increased NCC activity. Overall, insulin infusion increased blood pressure, and NCC and ENaC activity in rats. Increased apical targeting of ENaC and decreased WNK4 expression may be involved.


2000 ◽  
Vol 279 (1) ◽  
pp. F46-F53 ◽  
Author(s):  
Carolyn A. Ecelbarger ◽  
Gheun-Ho Kim ◽  
James Terris ◽  
Shyama Masilamani ◽  
Carter Mitchell ◽  
...  

Sodium transport is increased by vasopressin in the cortical collecting ducts of rats and rabbits. Here we investigate, by quantitative immunoblotting, the effects of vasopressin on abundances of the epithelial sodium channel (ENaC) subunits (α, β, and γ) in rat kidney. Seven-day infusion of 1-deamino-[8-d-arginine]-vasopressin (dDAVP) to Brattleboro rats markedly increased whole kidney abundances of β- and γ-ENaC (to 238% and 288% of vehicle, respectively), whereas α-ENaC was more modestly, yet significantly, increased (to 142% of vehicle). Similarly, 7-day water restriction in Sprague-Dawley rats resulted in significantly increased abundances of β- and γ- but no significant change in α-ENaC. Acute administration of dDAVP (2 nmol) to Brattleboro rats resulted in modest, but significant, increases in abundance for all ENaC subunits, within 1 h. In conclusion, all three subunits of ENaC are upregulated by vasopressin with temporal and regional differences. These changes are too slow to play a major role in the short-term action of vasopressin to stimulate sodium reabsorption in the collecting duct. Long-term increases in ENaC abundance should add to the short-term regulatory mechanisms (undefined in this study) to enhance sodium transport in the renal collecting duct.


2003 ◽  
Vol 371 (1) ◽  
pp. 1-14 ◽  
Author(s):  
Kelly GORMLEY ◽  
Yanbin DONG ◽  
Giuseppe A. SAGNELLA

The epithelial sodium channel (ENaC) is of fundamental importance in the control of sodium fluxes in epithelial cells. Modulation of sodium reabsorption through the distal nephron ENaC is an important component in the overall control of sodium balance, blood volume and thereby of blood pressure. This is clearly demonstrated by rare genetic disorders of sodium-channel activity (Liddle's syndrome and pseudohypoaldosteronism type 1), associated with contrasting effects on blood pressure. The mineralocorticoid aldosterone is a well-established modulator of sodium-channel activity. Considerable insight has now been gained into the intracellular signalling pathways linking aldosterone-mediated changes in gene transcription with changes in ion transport. Activating pathways include aldosterone-induced proteins and especially the serum- and glucocorticoid-inducible kinase (SGK) and the small G-protein, K-Ras 2A. Targeting of the ENaC for endocytosis and degradation is now emerging as a major mechanism for the down-regulation of channel activity. Several proteins acting in concert are an intrinsic part of this process but Nedd4 (neural precursor cell expressed developmentally down-regulated 4) is of central importance. Other mechanisms known to interact with ENaC and affect sodium transport include channel-activating protease 1 (CAP-1), a membrane-anchored protein, and the cystic fibrosis transmembrane regulator. The implications of research on accessory factors controlling ENaC activity are wide-ranging. Understanding cellular mechanisms controlling ENaC activity may provide a more detailed insight not only of ion-channel abnormalities in cystic fibrosis but also of the link between abnormal renal sodium transport and essential hypertension.


2021 ◽  
Vol 35 (5) ◽  
Author(s):  
Eric R. Barros Lamus ◽  
Valentina Carotti ◽  
Christine R. S. Vries ◽  
Femke Witsel ◽  
Onno J. Arntz ◽  
...  

Hypertension ◽  
2021 ◽  
Vol 77 (3) ◽  
pp. 759-767
Author(s):  
Stephanie M. Mutchler ◽  
Annet Kirabo ◽  
Thomas R. Kleyman

The development of high blood pressure is influenced by genetic and environmental factors, with high salt intake being a known environmental contributor. Humans display a spectrum of sodium-sensitivity, with some individuals displaying a significant blood pressure rise in response to increased sodium intake while others experience almost no change. These differences are, in part, attributable to genetic variation in pathways involved in sodium handling and excretion. ENaC (epithelial sodium channel) is one of the key transporters responsible for the reabsorption of sodium in the distal nephron. This channel has an important role in the regulation of extracellular fluid volume and consequently blood pressure. Herein, we review the role of ENaC in the development of salt-sensitive hypertension, and present mechanistic insights into the regulation of ENaC activity and how it may accelerate sodium-induced damage and dysfunction. We discuss the traditional role of ENaC in renal sodium reabsorption and review work addressing ENaC expression and function in the brain, vasculature, and immune cells, and how this has expanded the implications for its role in the initiation and progression of salt-sensitive hypertension.


Sign in / Sign up

Export Citation Format

Share Document