scholarly journals Interaction between Epithelial Sodium Channel γ-Subunit and Claudin-8 Modulates Paracellular Sodium Permeability in Renal Collecting Duct

2020 ◽  
Vol 31 (5) ◽  
pp. 1009-1023 ◽  
Author(s):  
Ali Sassi ◽  
Yubao Wang ◽  
Alexandra Chassot ◽  
Olga Komarynets ◽  
Isabelle Roth ◽  
...  

BackgroundWater and solute transport across epithelia can occur via the transcellular or paracellular pathways. Tight junctions play a key role in mediating paracellular ion reabsorption in the kidney. In the renal collecting duct, which is a typical absorptive tight epithelium, coordination between transcellular sodium reabsorption and paracellular permeability may prevent the backflow of reabsorbed sodium to the tubular lumen along a steep electrochemical gradient.MethodsTo investigate whether transcellular sodium transport controls tight-junction composition and paracellular permeability via modulating expression of the transmembrane protein claudin-8, we used cultured mouse cortical collecting duct cells to see how overexpression or silencing of epithelial sodium channel (ENaC) subunits and claudin-8 affect paracellular permeability. We also used conditional kidney tubule–specific knockout mice lacking ENaC subunits to assess the ENaC’s effect on claudin-8 expression.ResultsOverexpression or silencing of the ENaC γ-subunit was associated with parallel and specific changes in claudin-8 abundance. Increased claudin-8 abundance was associated with a reduction in paracellular permeability to sodium, whereas decreased claudin-8 abundance was associated with the opposite effect. Claudin-8 overexpression and silencing reproduced these functional effects on paracellular ion permeability. Conditional kidney tubule–specific ENaC γ-subunit knockout mice displayed decreased claudin-8 expression, confirming the cell culture experiments' findings. Importantly, ENaC β-subunit or α-subunit silencing or kidney tubule–specific β-ENaC or α-ENaC knockout mice did not alter claudin-8 abundance.ConclusionsOur data reveal the specific coupling between ENaC γ-subunit and claudin-8 expression. This coupling may play an important role in preventing the backflow of reabsorbed solutes and water to the tubular lumen, as well as in coupling paracellular and transcellular sodium permeability.

Endocrinology ◽  
2008 ◽  
Vol 150 (5) ◽  
pp. 2202-2210 ◽  
Author(s):  
Aurélie Nguyen Dinh Cat ◽  
Antoine Ouvrard-Pascaud ◽  
François Tronche ◽  
Maud Clemessy ◽  
Daniel Gonzalez-Nunez ◽  
...  

The mineralocorticoid receptor (MR) is a major regulator of renal sodium reabsorption and body fluid homeostasis. However, little is known about glucocorticoid receptor (GR)-dependent renal effects. Glucocorticoids may activate both receptors, so it is difficult to distinguish between MR- and GR-mediated effects in vivo. To overcome this complexity, we used a transgenic mouse model allowing conditional GR overexpression (doxycycline inducible TetON system, Hoxb7 promoter) in the renal collecting duct (CD) to identify GR-regulated genes involved in sodium transport in the CD. In microdissected cortical CD, induction of GR expression led (after 2 d of doxycycline) to increased α-epithelial sodium channel and glucocorticoid-induced leucine zipper and decreased abundance of with-no-lysine kinase 4 transcripts, without modification of Na,K-ATPase, serum- and glucocorticoid-kinase-1, or MR expression. No changes occurred in the upstream distal and connecting tubules [distal convoluted tubule (DCT), connecting tubule (CNT)]. Sodium excretion was unaltered, but the urinary aldosterone concentration was reduced, suggesting compensation of transitory extracellular volume expansion that subsequently disappeared. At steady state, i.e. after 15 d of doxycycline administration, transcript abundance remained altered in the CD, whereas mirror changes appeared in the DCT and CNT. Plasma aldosterone or glucocorticoids and blood pressure were all unaffected. These experiments show that: 1) GR, in addition to MR, controls epithelial sodium channel- and glucocorticoid-induced leucine zipper expression in vivo in the CD; 2) with-no-lysine kinase 4 is negatively controlled by GR; and 3) the DCT and CNT compensate for these alterations to maintain normal sodium reabsorption and blood pressure. These results suggest that enhanced GR expression may contribute to enhanced sodium retention in some pathological situations.


2021 ◽  
pp. ASN.2021010046
Author(s):  
Eva Dizin ◽  
Valerie Olivier ◽  
Isabelle Roth ◽  
Ali Sassi ◽  
Grégoire Arnoux ◽  
...  

Background Active sodium reabsorption is the major factor influencing renal oxygen consumption and production of reactive oxygen species (ROS). Increased sodium reabsorption uses more oxygen, which may worsen medullary hypoxia and produce more ROS via enhanced mitochondrial ATP synthesis. Both mechanisms may activate the hypoxiainducible factor (HIF) pathway. Because the collecting duct is exposed to low oxygen pressure and variations of active sodium transport, we assessed whether the HIF pathway controls epithelial sodium channel (ENaC)-dependent sodium transport. Methods We investigated HIF's effect on ENaC expression in mpkCCDcl4 cells (a model of collecting duct principal cells) using real-time PCR and Western blot and ENaC activity by measuring amiloride-sensitive current. We also assessed the effect of hypoxia and sodium intake on abundance of kidney sodium transporters in wild-type and inducible kidney tubule-specific Hif1α knockout mice. Results In cultured cells, activation of the HIF pathway by dimethyloxalylglycine or hypoxia inhibited sodium transport and decreased expression of βENaC and γENaC, as well as of Na,K-ATPase. HIF1α silencing increased βENaC and γENaC expression and stimulated sodium transport. A constitutively active mutant of HIF1α produced the opposite effect. Aldosterone and inhibition of the mitochondrial respiratory chain slowly activated the HIF pathway, suggesting that ROS may also activate HIF. Decreased γENaC abundance induced by hypoxia in normal mice was abolished in Hif1α knockout mice. Similarly, Hif1α knockout led to increased γENaC abundance under high sodium intake. Conclusions This study reveals that γENaC expression and activity are physiologically controlled by the HIF pathway, which may represent a negative feedback mechanism to preserve oxygenation and/or prevent excessive ROS generation under increased sodium transport.


2000 ◽  
Vol 279 (1) ◽  
pp. F46-F53 ◽  
Author(s):  
Carolyn A. Ecelbarger ◽  
Gheun-Ho Kim ◽  
James Terris ◽  
Shyama Masilamani ◽  
Carter Mitchell ◽  
...  

Sodium transport is increased by vasopressin in the cortical collecting ducts of rats and rabbits. Here we investigate, by quantitative immunoblotting, the effects of vasopressin on abundances of the epithelial sodium channel (ENaC) subunits (α, β, and γ) in rat kidney. Seven-day infusion of 1-deamino-[8-d-arginine]-vasopressin (dDAVP) to Brattleboro rats markedly increased whole kidney abundances of β- and γ-ENaC (to 238% and 288% of vehicle, respectively), whereas α-ENaC was more modestly, yet significantly, increased (to 142% of vehicle). Similarly, 7-day water restriction in Sprague-Dawley rats resulted in significantly increased abundances of β- and γ- but no significant change in α-ENaC. Acute administration of dDAVP (2 nmol) to Brattleboro rats resulted in modest, but significant, increases in abundance for all ENaC subunits, within 1 h. In conclusion, all three subunits of ENaC are upregulated by vasopressin with temporal and regional differences. These changes are too slow to play a major role in the short-term action of vasopressin to stimulate sodium reabsorption in the collecting duct. Long-term increases in ENaC abundance should add to the short-term regulatory mechanisms (undefined in this study) to enhance sodium transport in the renal collecting duct.


2021 ◽  
Vol 35 (5) ◽  
Author(s):  
Eric R. Barros Lamus ◽  
Valentina Carotti ◽  
Christine R. S. Vries ◽  
Femke Witsel ◽  
Onno J. Arntz ◽  
...  

2006 ◽  
Vol 290 (5) ◽  
pp. F1055-F1064 ◽  
Author(s):  
Jian Song ◽  
Xinqun Hu ◽  
Shahla Riazi ◽  
Swasti Tiwari ◽  
James B. Wade ◽  
...  

Hyperinsulinemia is associated with hypertension. Dysregulation of renal distal tubule sodium reabsorption may play a role. We evaluated the regulation of the epithelial sodium channel (ENaC) and the thiazide-sensitive Na-Cl cotransporter (NCC) during chronic hyperinsulinemia in rats and correlated these changes to blood pressure as determined by radiotelemetry. Male Sprague-Dawley rats (∼270 g) underwent one of the following three treatments for 4 wk ( n = 6/group): 1) control; 2) insulin-infused plus 20% dextrose in drinking water; or 3) glucose water-drinking (20% dextrose in water). Mean arterial pressures were increased by insulin and glucose (mmHg at 3 wk): 98 ± 1 (control), 107 ± 2 (insulin), and 109 ± 3 (glucose), P < 0.01. Insulin (but not glucose) increased natriuretic response to benzamil (ENaC inhibitor) and hydrochlorothiazide (NCC inhibitor) on average by 125 and 60%, respectively, relative to control rats, suggesting increased activity of these reabsorptive pathways. Neither insulin nor glucose affected the renal protein abundances of NCC or the ENaC subunits (α, β, and γ) in kidney cortex, outer medulla, or inner medulla in a major way, as determined by immunoblotting. However, insulin and to some extent glucose increased apical localization of these subunits in cortical collecting duct principal cells, as determined by immunoperoxidase labeling. In addition, insulin decreased cortical “with no lysine” kinase (WNK4) abundance (by 16% relative to control), which may have increased NCC activity. Overall, insulin infusion increased blood pressure, and NCC and ENaC activity in rats. Increased apical targeting of ENaC and decreased WNK4 expression may be involved.


Sign in / Sign up

Export Citation Format

Share Document