scholarly journals Plasticity of the Reproductive Axis Caused by Social Status Change in an African Cichlid Fish: I. Pituitary Gonadotropins

Endocrinology ◽  
2011 ◽  
Vol 152 (1) ◽  
pp. 281-290 ◽  
Author(s):  
Karen P. Maruska ◽  
Berta Levavi-Sivan ◽  
Jakob Biran ◽  
Russell D. Fernald

Abstract Social position in a dominance hierarchy is often tightly coupled with fertility. Consequently, an animal that can recognize and rapidly take advantage of an opportunity to rise in rank will have a reproductive advantage. Reproduction in all vertebrates is controlled by the brain-pituitary-gonad axis, and in males of the African cichlid fish Astatotilapia burtoni, GnRH1 neurons at the apex of this axis are under social control. However, little is known about how quickly social information is transformed into functional reproductive change, or about how socially controlled changes in GnRH1 neurons influence downstream actions of the brain-pituitary-gonad axis. We created an opportunity for reproductively suppressed males to ascend in status and then measured how quickly the perception of this opportunity caused changes in mRNA and protein levels of the pituitary gonadotropins. mRNA levels of the β-subunits of LH and FSH rose rapidly in the pituitary 30 min after suppressed males perceived an opportunity to ascend. In contrast, mRNA levels of GnRH receptor-1 remained unchanged during social transition but were higher in stable dominant compared with subordinate males. In the circulation, levels of both LH and FSH were also quickly elevated. There was a positive correlation between mRNA in the pituitary and circulating protein levels for LH and FSH, and both gonadotropins were positively correlated with plasma 11-ketotestosterone. Our results show that the pituitary is stimulated extremely rapidly after perception of social opportunity, probably to allow suppressed males to quickly achieve reproductive success in a dynamic social environment.

Endocrinology ◽  
2011 ◽  
Vol 152 (1) ◽  
pp. 291-302 ◽  
Author(s):  
Karen P. Maruska ◽  
Russell D. Fernald

Abstract Reproduction in all vertebrates is controlled by the brain-pituitary-gonad (BPG) axis, which is regulated socially in males of the African cichlid fish Astatotilapia burtoni. Although social information influences GnRH1 neurons at the apex of the BPG axis, little is known about how the social environment and dominance affects the cellular and molecular composition of the testes to regulate reproductive capacity. We created an opportunity for reproductively suppressed males to ascend in status and then measured changes in gene expression and tissue morphology to discover how quickly the perception of this opportunity can influence the testes. Our results show rapid up-regulation of mRNA levels of FSH receptor and several steroid receptor subtypes in the testes during social ascent. In contrast, LH receptor was not elevated until 72 h after ascent, but this increase was coincident with elevated circulating androgens and early stages of spermatogenesis, suggesting a role in steroidogenesis. The spermatogenic potential of the testes, as measured by cellular composition, was also elevated before the overall increase in testes size. The presence of cysts at all stages of spermatogenesis, coupled with lower levels of gonadotropin and steroid receptors in subordinate males, suggests that the BPG axis and spermatogenesis are maintained at a subthreshold level in anticipation of the chance to gain a territory and become reproductively active. Our results show that the testis is stimulated extremely quickly after perception of social opportunity, presumably to allow suppressed males to rapidly achieve high reproductive success in a dynamic social environment.


2016 ◽  
Vol 525 (3) ◽  
pp. 610-638 ◽  
Author(s):  
Karen P. Maruska ◽  
Julie M. Butler ◽  
Karen E. Field ◽  
Danielle T. Porter

Sign in / Sign up

Export Citation Format

Share Document