reproductive axis
Recently Published Documents


TOTAL DOCUMENTS

432
(FIVE YEARS 107)

H-INDEX

54
(FIVE YEARS 6)

2022 ◽  
Vol 12 ◽  
Author(s):  
Grégoy Y. Bédécarrats ◽  
Charlene Hanlon ◽  
Kazuyoshi Tsutsui

Since its discovery as a novel gonadotropin inhibitory peptide in 2000, the central and peripheral roles played by gonadotropin-inhibiting hormone (GnIH) have been significantly expanded. This is highlighted by the wide distribution of its receptor (GnIH-R) within the brain and throughout multiple peripheral organs and tissues. Furthermore, as GnIH is part of the wider RF-amide peptides family, many orthologues have been characterized across vertebrate species, and due to the promiscuity between ligands and receptors within this family, confusion over the nomenclature and function has arisen. In this review, we intend to first clarify the nomenclature, prevalence, and distribution of the GnIH-Rs, and by reviewing specific localization and ligand availability, we propose an integrative role for GnIH in the coordination of reproductive and metabolic processes. Specifically, we propose that GnIH participates in the central regulation of feed intake while modulating the impact of thyroid hormones and the stress axis to allow active reproduction to proceed depending on the availability of resources. Furthermore, beyond the central nervous system, we also propose a peripheral role for GnIH in the control of glucose and lipid metabolism at the level of the liver, pancreas, and adipose tissue. Taken together, evidence from the literature strongly suggests that, in fact, the inhibitory effect of GnIH on the reproductive axis is based on the integration of environmental cues and internal metabolic status.


Author(s):  
Saber Ghaderpour ◽  
Rafighe Ghiasi ◽  
Hamed Heydari ◽  
Rana Keyhanmanesh

Abstract Over the past decades, obesity and infertility in men increased in parallel, and the association between both phenomena have been examined by several researchers. despite the fact that there is no agreement, obesity appears to affect the reproductive potential of men through various mechanisms, such as changes in the hypothalamic-pituitary-testicular (HPT) axis, spermatogenesis, sperm quality and/or alteration of sexual health. Leptin is a hormone produced by the adipose tissue, and its production elevates with increasing body fat. Many studies have supported the relationship between raised leptin production and reproductive function regulation. In fact, Leptin acts on the HPT axis in men at all levels. However, most obese men are insensitive to increased production of endogenous leptin and functional leptin resistance development. Recently, it has been recommended that Kisspeptin neurons mediate the leptin’s effects on the reproductive system. Kisspeptin binding to its receptor on gonadotropin-releasing hormone (GnRH) neurons, activates the mammal’s reproductive axis and stimulates GnRH release. Increasing infertility associated with obesity is probably mediated by the Kisspeptin-GnRH pathway. In this review, the link between obesity, kisspeptin, leptin, and male fertility will be discussed.


2021 ◽  
Vol 5 (6) ◽  
pp. 40-43
Author(s):  
Chuanyu Wang ◽  
Fengjie He

Polycystic ovary syndrome is a common reproductive endocrine metabolic disease in clinic. Professor Fengjie He has accumulated rich clinical experience in the process of diagnosis and treatment of the disease. He believes that the key to the pathogenesis of the disease is the dysfunction of the reproductive axis of “kidney - Tiangui - Chongren – uterus,” which is based on kidney deficiency and involves the liver and spleen. Clinically, patients with kidney deficiency and liver depression are common. The treatment takes tonifying the kidney and regulating the menstrual cycle as the main method, and the clinical effect is very effective.


2021 ◽  
Vol 11 (4) ◽  
pp. 163-196
Author(s):  
Luís Rato ◽  
Ana C. A. Sousa

The current scenario of male infertility is not yet fully elucidated; however, there is increasing evidence that it is associated with the widespread exposure to endocrine-disrupting chemicals (EDCs), and in particular to obesogens. These compounds interfere with hormones involved in the regulation of metabolism and are associated with weight gain, being also able to change the functioning of the male reproductive axis and, consequently, the testicular physiology and metabolism that are pivotal for spermatogenesis. The disruption of these tightly regulated metabolic pathways leads to adverse reproductive outcomes. The permanent exposure to obesogens has raised serious health concerns. Evidence suggests that obesogens are one of the leading causes of the marked decline of male fertility and key players in shaping the future health outcomes not only for those who are directly exposed but also for upcoming generations. In addition to the changes that lead to inefficient functioning of the male gametes, obesogens induce alterations that are “imprinted” on the genes of the male gametes, establishing a link between generations and contributing to the transmission of defects. Unveiling the molecular mechanisms by which obesogens induce toxicity that may end-up in epigenetic modifications is imperative. This review describes and discusses the suggested molecular targets and potential mechanisms for obesogenic–disrupting chemicals and the subsequent effects on male reproductive health.


2021 ◽  
Author(s):  
Shyam Pyari Jaiswar ◽  
Apala Priyadarshini

Leptin is a peptide hormone, secreted primarily by the adipose tissue, placenta being the second leptin-producing tissue in humans. Apart from playing an integral role in food intake regulation and energy balance, leptin is an important signalling molecule affecting human reproduction. Accumulated evidence suggests that leptin has potential roles in the regulation of GnRH and LH secretion, puberty, pregnancy, and lactation. Deregulation of leptin levels has been associated with several reproductive disorders including infertility, recurrent pregnancy loss, and polycystic ovary syndrome. This chapter illustrates the importance of leptin in female reproductive health, its role in the metabolic regulation of reproductive axis and its eventual pathophysiological implications in prevalent reproductive disorders.


Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 3079
Author(s):  
Loïse Serra ◽  
Anthony Estienne ◽  
Claudine Vasseur ◽  
Pascal Froment ◽  
Joëlle Dupont

Glyphosate (G), also known as N-(phosphonomethyl)glycine is the declared active ingredient of glyphosate-based herbicides (GBHs) such as Roundup largely used in conventional agriculture. It is always used mixed with formulants. G acts in particular on the shikimate pathway, which exists in bacteria, for aromatic amino acids synthesis, but this pathway does not exist in vertebrates. In recent decades, researchers have shown by using various animal models that GBHs are endocrine disruptors that might alter reproductive functions. Our review describes the effects of exposure to G or GBHs on the hypothalamic–pituitary–gonadal (HPG) axis in males and females in terms of endocrine disruption, cell viability, and proliferation. Most of the main regulators of the reproductive axis (GPR54, GnRH, LH, FSH, estradiol, testosterone) are altered at all levels of the HPG axis (hypothalamus, pituitary, ovaries, testis, placenta, uterus) by exposure to GBHs which are considered more toxic than G alone due to the presence of formulants such as polyoxyethylene tallow amine (POEA).” In addition, we report intergenerational impacts of exposure to G or GBHs and, finally, we discuss different strategies to reduce the negative effects of GBHs on fertility.


Animals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3117
Author(s):  
Lijun Dai ◽  
Quanwei Zhang ◽  
Jun Shi ◽  
Xu Bai ◽  
Xiaoxiao An ◽  
...  

Nuclear hormone receptors NR1D1 and NR4A2 play important roles in the synthesis and metabolism of hormones that are thought to be strictly regulated by the hypothalamus-pituitary-gonad axis (HPG) tissues via gene expression. However, in the yak, the function and regulatory mechanisms of NR1D1 and NR4A2 are not clearly understood. The current study is aimed to investigate the expression patterns, distribution and functions of these two receptors in HPG tissues in male Tianzhu white yaks. Immunohistochemical staining showed NR1D1 and NR4A2 proteins were present in all yak HPG tissues with differential expression patterns and degrees of staining, particularly in Leydig cells that were strongly positive in accordance with the immunofluorescence results. qRT-PCR and Western blot results suggested that the highest expression levels of NR1D1 and NR4A2 mRNA were present in the hypothalamus, while the expression levels of NR1D1 and NR4A2 proteins were higher in the testis and epididymis than in the hypothalamus or pituitary gland. In addition, expression levels of NR1D1 and NR4A2 mRNA and protein in testicular tissues differed by age. Expression levels were significantly higher at 6 years of age. Gene ontology (GO) and pathway analysis enrichment revealed that NR1D1 may directly regulate the synthesis and metabolism of steroid hormones via interaction with different targets, while NR4A2 may indirectly regulate the synthesis and metabolism of steroid hormones. These results showed that NR1D1 and NR4A2, as important mediators, are involved in the regulation of male yak reproduction, and especially of steroid hormones and androgen metabolism. These results will be helpful for the further understanding of the regulatory mechanisms of NR1D1 and NR4A2 in yak reproduction.


Endocrinology ◽  
2021 ◽  
Author(s):  
Deyana Ivanova ◽  
Xiao-Feng Li ◽  
Caitlin McIntyre ◽  
Yali Liu ◽  
Lingsi Kong ◽  
...  

Abstract Psychosocial stress disrupts reproduction and interferes with pulsatile LH secretion. The posterodorsal medial amygdala (MePD) is an upstream modulator of the reproductive axis and stress. Corticotropin-releasing factor type-2 receptors (CRFR2) are activated in the presence of psychosocial stress together with increased expression of the CRFR2 ligand Urocortin3 (Ucn3) in the MePD of rodents. We investigate whether Ucn3 signalling in the MePD is involved in mediating the suppressive effect of psychosocial stress on LH pulsatility. Firstly, we administered Ucn3 into the MePD and monitored the effect on LH pulses in ovariectomised mice. Next, we delivered Astressin2B, a selective CRFR2 antagonist, intra-MePD in the presence of predator odor, 2,4,5-Trimethylthiazole (TMT) and examined the effect on LH pulses. Subsequently, we virally infected Ucn3-cre-tdTomato mice with inhibitory DREADDs targeting MePD Ucn3 neurons while exposing mice to TMT or restraint stress and examined the effect on LH pulsatility as well as corticosterone release. Administration of Ucn3 into the MePD dose-dependently inhibited LH pulses and administration of Astressin2B blocked the suppressive effect of TMT on LH pulsatility. Additionally, DREADDs inhibition of MePD Ucn3 neurons blocked TMT and restraint stress-induced inhibition of LH pulses and corticosterone release. These results demonstrate for the first time that Ucn3 neurons in the MePD mediate psychosocial stress-induced suppression of the GnRH pulse generator and corticosterone secretion. Ucn3 signalling in the MePD plays a role in modulating the hypothalamic-pituitary-ganadal and hypothalamic-pituitary-adrenal axes, and this brain locus may represent a nodal centre in the interaction between the reproductive and stress axes.


Author(s):  
Maria Jesus Vazquez ◽  
Silvia Daza-Dueñas ◽  
Manuel Tena-Sempere

Abstract Reproduction is an essential function for perpetuation of the species. As such, it is controlled by sophisticated regulatory mechanisms, which allow a perfect match between environmental conditions and internal cues, to ensure adequate pubertal maturation and achievement of reproductive capacity. Besides classical genetic regulatory events, mounting evidence has documented that different epigenetic mechanisms operate at different levels of the reproductive axis to finely tune the development and function of this complex neuroendocrine system along the lifespan. In this mini-review, we will summarize recent evidence on the role of epigenetics in the control of reproduction, with special focus on the modulation of the central components of this axis. Particular attention will be paid to the epigenetic control of puberty and Kiss1 neurons, as major developments have taken place in this domain recently. In addition, the putative role of central epigenetic mechanisms in mediating the influence of nutritional and environmental cues on reproductive function will be also discussed.


Author(s):  
Abreu AP ◽  
Toro CA ◽  
Song YB ◽  
Navarro VM ◽  
Bosch MA ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document