Pharmacological characterization of vasotocin stimulation of phosphoinositide turnover in frog adrenal gland.

Endocrinology ◽  
1992 ◽  
Vol 130 (1) ◽  
pp. 475-483 ◽  
Author(s):  
A Larcher ◽  
C Delarue ◽  
F Homo-Delarche ◽  
S Kikuyama ◽  
G Kupryszewski ◽  
...  
2003 ◽  
Vol 89 (3) ◽  
pp. 1440-1455 ◽  
Author(s):  
Jonathan E. Cohen ◽  
Chiadi U. Onyike ◽  
Virginia L. McElroy ◽  
Allison H. Lin ◽  
Thomas W. Abrams

We attempted to identify compounds that are effective in blocking the serotonin (5-hydroxytryptamine, 5-HT) receptor(s) that activate adenylyl cyclase (AC) in Aplysia CNS. We call this class of receptor 5-HTapAC. Eight of the 14 antagonists tested were effective against 5-HTapAC in CNS membranes with the following rank order of potency: methiothepin > metergoline ∼ fluphenazine > clozapine > cyproheptadine ∼ risperidone ∼ ritanserin > NAN-190. GR-113808, olanzapine, Ro-04-6790, RS-102221, SB-204070, and spiperone were inactive. Methiothepin completely blocked 5-HT stimulation of AC with a K b of 18 nM. Comparison of the pharmacological profile of the 5-HTapAC receptor with those of mammalian 5-HT receptor subtypes suggested it most closely resembles the 5-HT6 receptor. AC stimulation in Aplysia sensory neuron (SN) membranes was also blocked by methiothepin. Methiothepin substantially inhibited two effects of 5-HT on SN firing properties that are mediated by a cAMP-dependent reduction in S-K+ current: spike broadening in tetraethylammonium/nifedipine and increased excitability. Consistent with cyproheptadine blocking 5-HT stimulation of AC, cyproheptadine also blocked the 5-HT-induced increase in SN excitability. Methiothepin was less effective in blocking AC-mediated modulatory effects of 5-HT in electrophysiological experiments on SNs than in blocking AC stimulation in CNS or SN membranes. This reduction in potency appears to be due to effects of the high ionic strength of physiological saline on the binding of this antagonist to the receptor. Methiothepin also antagonized AC-coupled dopamine receptors but not AC-coupled small cardioactive peptide receptors. In conjunction with other pharmacological probes, this antagonist should be useful in analyzing the role of 5-HT in various forms of neuromodulation in Aplysia.


2001 ◽  
Vol 120 (5) ◽  
pp. A630-A630
Author(s):  
C DIENEFELD ◽  
R BECKER ◽  
M KAMATH ◽  
G TOUGAS ◽  
M HAUPTS ◽  
...  
Keyword(s):  

Planta Medica ◽  
2014 ◽  
Vol 80 (16) ◽  
Author(s):  
CC Guilhon ◽  
A Minho ◽  
AS Barros ◽  
PD Fernandes

Sign in / Sign up

Export Citation Format

Share Document