trabecular meshwork cells
Recently Published Documents


TOTAL DOCUMENTS

457
(FIVE YEARS 93)

H-INDEX

39
(FIVE YEARS 6)

2022 ◽  
pp. 108935
Author(s):  
Kamesh Dhamodaran ◽  
Hasna Baidouri ◽  
Andrews Nartey ◽  
Julia Staverosky ◽  
Kate Keller ◽  
...  

2021 ◽  
pp. 108888
Author(s):  
Kimberly Graybeal ◽  
Luis Sanchez ◽  
Chi Zhang ◽  
Linsey Stiles ◽  
Jie J. Zheng

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Eri Takahashi ◽  
Junji Saruwatari ◽  
Tomokazu Fujimoto ◽  
Yuki Tanoue ◽  
Takaichi Fukuda ◽  
...  

AbstractTrabecular meshwork (TM) and Schlemm’s canal (SC) are the main structures within the conventional outflow pathway, and TM cells and SC endothelial (SCE) cells are essential for controlling intraocular pressure. To examine the interaction between TM cells and SCE cells, we investigated whether exosomes contribute to intercellular communication. Additionally, TM cells in glaucoma acquire mesenchymal characteristics in response to transforming growth factor (TGF)-β2 and extracellular matrix proteins such as collagen type 1 (Col-1); these changes result in increased resistance of aqueous outflow. In this study, we stimulated TM cells with TGF-β2 and Col-1 and characterized the exosomal miRNAs (exomiRs) released in response to each stimulus. Isolated exosomes were rich in miRNAs, with downregulated miR-23a-5p and upregulated miR-3942-5p and miR-7515 levels following Col-1 or TGF-β2 stimulation. Next, a miRNA-mRNA network under TGF-β2 stimulation was constructed. There were no connections among the 3 miRNAs and predicted genes under Col-1 stimulation. GO and KEGG analyses revealed that the identified miRNAs were associated with various signaling pathways, including the inflammatory response. Interestingly, SCE cells treated with miR-7515 mimic showed increased VEGFA, VEGFR2, PECAM, and Tie2 expression. Ultrastructures typical of exosomes and positive staining for exosomal markers were observed in human TM cells. Our data showed that TM cells may communicate with SCE cells via exomiRs and that miR-7515 may be important for SCE cell reprogramming.


2021 ◽  
Author(s):  
Breedge Callaghan ◽  
Karen Lester ◽  
Brian Lane ◽  
Xiaochen Fan ◽  
Katarzyna Goljanek-Whysall ◽  
...  

Abstract Glaucoma is a complex neurodegenerative disease resulting in progressive optic neuropathy and is a leading cause of irreversible blindness worldwide. Primary open angle glaucoma (POAG) is the predominant form affecting 65.5 million people globally. Despite the prevalence of POAG and the identification of over 120 glaucoma related genetic loci, the underlaying molecular mechanisms are still poorly understood. The transforming growth factor beta (TGF-β) signalling pathway is implicated in the molecular pathology of POAG. To gain a better understanding of the role TGF-β2 plays in the glaucomatous changes to the molecular pathology in the trabecular meshwork, we employed RNA-Seq to delineate the TGF-β2 induced changes in the transcriptome of normal primary human trabecular meshwork cells (HTM). We identified a significant number of differentially expressed genes and associated pathways that contribute to the pathogenesis of POAG. The differentially expressed genes were predominantly enriched in ECM regulation, TGF-β signalling, proliferation/apoptosis, inflammation/wound healing, MAPK signalling, oxidative stress and RHO signalling. Canonical pathway analysis confirmed the enrichment of RhoA signalling, inflammatory-related processes, ECM and cytoskeletal organisation in HTM cells in response to TGF-β2. We also identified novel genes and pathways that were affected after TGF-β2 treatment in the HTM, suggesting additional pathways are activated, including Nrf2, PI3K-Akt, MAPK and HIPPO signalling pathways. The identification and characterisation of TGF-β2 dependent differentially expressed genes and pathways in HTM cells is essential to understand the patho-physiology of glaucoma and to develop new therapeutic agents.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Megumi Watanabe ◽  
Yosuke Ida ◽  
Hiroshi Ohguro ◽  
Chiaki Ota ◽  
Fumihito Hikage

AbstractTo establish appropriate ex vivo models for a glaucomatous trabecular meshwork (TM), two-dimensional (2D) and three-dimensional (3D) cultures of human trabecular meshwork cells (HTM) were prepared in the presence of 250 nM dexamethasone (DEX) or 5 ng/mL TGFβ2, and characterized by the following analyses; transendothelial electrical resistance (TEER) measurements, FITC dextran permeability, scanning electron microscopy and the expression of the extracellular matrix (ECM) including collagen (COL)1, 4 and 6, and fibronectin (FN), α-smooth muscle actin (α-SMA), tissue inhibitor of metalloproteinase (TIMP)1–4, and matrix metalloproteinase (MMP)2, 9 and 14. DEX and TGFβ2 both caused a significant increase or decrease in the TEER values and FITC dextran permeability. During the 3D spheroid culture, DEX or TGFβ2 induced a mild and significant down-sizing and an increase in stiffness, respectively. TGFβ2 induced a significant up-regulation of COL1 and 4, FN, α-SMA, and MMP 2 and 14 (2D) or COL1 and 6, and TIMP2 and 3 (3D), and DEX induced a significant up-regulation of FN (3D) and TIMP4 (2D and 3D). The findings presented herein indicate that DEX or TGFβ2 resulted in mild and severe down-sized and stiff 3D HTM spheroids, respectively, thus making them viable in vitro HTM models for steroid-induced and primary open angle glaucoma.


2021 ◽  
Author(s):  
Kathirvel Kandasamy ◽  
Ravinarayanan Haribalaganesh ◽  
Ramasamy Krishnadas ◽  
Veerappan Muthukkaruppan ◽  
Colin E Willoughby ◽  
...  

The genome-wide gene expression analysis of primary human trabecular meshwork (HTM) cells with known glucocorticoid (GC) responsiveness was not reported earlier. Therefore, the purpose of this study was to investigate genes and pathways involved in the GC responsiveness in human trabecular meshwork (HTM) cells using RNA sequencing. A perfusion cultured human anterior segment ex vivo model was utilized to identify the induction of GC-induced ocular hypertension in one eye of a paired eyes after dexamethasone treatment based on the maximum intraocular pressure response and in the contralateral eye, HTM cells were isolated to classify GC-responder and non-responder cells. Some previously reported and unique genes and their associated pathways were identified in HTM cells in response to dexamethasone treatment versus vehicle control and more significantly in GC-responder and non-responder cells. This study will open up the possibility of identifying suitable molecular targets which have the potential to treat GC-induced ocular hypertension/glaucoma.


Biomolecules ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1371
Author(s):  
Xiaochen Fan ◽  
Emine K. Bilir ◽  
Olivia A. Kingston ◽  
Rachel A. Oldershaw ◽  
Victoria R. Kearns ◽  
...  

Glaucoma is one of the leading causes of vision loss worldwide, characterised with irreversible optic nerve damage and progressive vision loss. Primary open-angle glaucoma (POAG) is a subset of glaucoma, characterised by normal anterior chamber angle and raised intraocular pressure (IOP). Reducing IOP is the main modifiable factor in the treatment of POAG, and the trabecular meshwork (TM) is the primary site of aqueous humour outflow (AH) and the resistance to outflow. The structure and the composition of the TM are key to its function in regulating AH outflow. Dysfunction and loss of the TM cells found in the natural ageing process and more so in POAG can cause abnormal extracellular matrix (ECM) accumulation, increased TM stiffness, and increased IOP. Therefore, repair or regeneration of TM’s structure and function is considered as a potential treatment for POAG. Cell transplantation is an attractive option to repopulate the TM cells in POAG, but to develop a cell replacement approach, various challenges are still to be addressed. The choice of cell replacement covers autologous or allogenic approaches, which led to investigations into TM progenitor cells, induced pluripotent stem cells (iPSCs), and mesenchymal stem cells (MSCs) as potential stem cell source candidates. However, the potential plasticity and the lack of definitive cell markers for the progenitor and the TM cell population compound the biological challenge. Morphological and differential gene expression of TM cells located within different regions of the TM may give rise to different cell replacement or regenerative approaches. As such, this review describes the different approaches taken to date investigating different cell sources and their differing cell isolation and differentiation methodologies. In addition, we highlighted how these approaches were evaluated in different animal and ex vivo model systems and the potential of these methods in future POAG treatment.


2021 ◽  
Author(s):  
Jorge Santiago ◽  
Cristhian Romero ◽  
Santiago Guerrero ◽  
Francisco Trejo ◽  
Daniel Robles

The behavior of potassium ion (K+) establishes the repolarization and hyperpolarization states in the cell membrane of trabecular meshwork cells. One of the main proteins that controls this ion is calcium-dependent potassium maxi-channels BKca, their malfunction evoked by tyrosine kinases, destabilize the control of aqueous humor flow and the increase of intraocular pressure, responsible of glaucoma. In the present work, the ionic behavior of ion K+ of trabecular cells is detailed, when genistein and tyrphostin-51 are applied in culture cells. The flow behavior is described by means of mathematical expressions based on exponential functions and equations of line. Genistein and tyrphostin-51 drugs are compared in their efficiency of inhibiting tyrosine kinases from the mathematical functions provided by the proposed method. The present study describes the ion behavior regarding K+ potassium which is controlled by maxi-channels BKca that come from trabecular meshwork when genistein and tyrphostin-51 are applied in culture cells. The behavior of this flow is described by mathematical expressions. Thus, inhibitor drugs effect and characteristic time behavior are compared using their mathematical function.


Sign in / Sign up

Export Citation Format

Share Document