scholarly journals Inhibin Suppresses and Activin Stimulates Osteoblastogenesis and Osteoclastogenesis in Murine Bone Marrow Cultures

Endocrinology ◽  
2002 ◽  
Vol 143 (1) ◽  
pp. 74-83 ◽  
Author(s):  
D. Gaddy-Kurten ◽  
J. K. Coker ◽  
E. Abe ◽  
R. L. Jilka ◽  
S. C. Manolagas

Abstract Using primary murine bone marrow cell cultures, we demonstrate that inhibin suppresses osteoblastogenesis and osteoclastogenesis. In contrast, activin supports osteoblast formation (by alkaline phosphatase-positive and mineralized colony formation); and activin also stimulates osteoclast formation (as measured by staining tartrate-resistant acid phosphatase-positive multinucleated cells). Inhibin, the activin antagonist follistatin, and the bone morphogenetic protein antagonist noggin can all suppress endogenous activin accumulation in bone marrow cultures. Associated with this decrease in activin is the loss of mineralized osteoblastic colony formation (colony forming unit-osteoblast; CFU-OB). However, exogenous activin administration, even in the presence of noggin, permits both alkaline phosphatase-positive and CFU-OB colony formation in vitro. In contrast, the stimulatory effects of locally produced activin on osteoblast and osteoclast development are not likely to be dominant over the suppressive effects of gonadally derived inhibin. The suppressive effect of inhibin is maintained in the presence of either activin or bone morphogenetic protein, suggesting the presence of a distinct inhibin-specific receptor. Taken together, the direct regulation of osteoblastogenesis and osteoclastogenesis by inhibin and activin in vitro suggest that changes in the inhibin/activin ratio detected by bone marrow cells, during the perimenopausal transition, contribute to altered cell differentiation and may be associated with the increased bone resorption observed at this time.

2009 ◽  
Vol 90 (3-4) ◽  
pp. 76-80 ◽  
Author(s):  
Katherine A. Blackwell ◽  
Peter Hortschansky ◽  
Srdan Sanovic ◽  
Shilpa Choudhary ◽  
Lawrence G. Raisz ◽  
...  

Blood ◽  
1984 ◽  
Vol 64 (2) ◽  
pp. 516-525 ◽  
Author(s):  
RJ Gualtieri ◽  
RK Shadduck ◽  
DG Baker ◽  
PJ Quesenberry

The nature of hematopoietic regulatory factors elaborated by the adherent (stromal) cells of long-term murine bone marrow cultures and the effect of in vitro stromal irradiation (XRT) on the production of these factors was investigated. Using an in situ stromal assay employing a double layer of semisolid agar, it was possible to demonstrate stromal elaboration of at least two colony-stimulating activities, ie, granulocyte/macrophage colony-stimulating activity (G/M- CSA) and megakaryocyte colony-stimulating activity (Meg-CSA). Exposure of the stroma to XRT resulted in dose-dependent elevations of both activities that correlated inversely with total myeloid cell mass as determined by concurrent reductions in total supernatant cell recoveries from irradiated cultures. Mixture experiments that combined control and irradiated stroma revealed that the hematopoietically active control stroma could block detection of XRT-related G/M-CSA elevations. These data implicate a local negative feedback mechanism in the regulation of hematopoiesis. Antiserum directed against purified L cell colony-stimulating factor (CSF) reduced granulocyte/macrophage colony formation in the target layer but did not effect the increased Meg-CSA. While a radioimmunoassay for L-cell type CSF was unable to detect significant differences in concentrated media from control and irradiated cultures, bioassays of these media revealed XRT-related G/M- CSA elevations. These results indicate that the G/M-CSA elaborated in these cultures is immunologically distinct from the Meg-CSA produced, and although distinct from L cell CSF, the G/M-CSA is crossreactive with the L cell CSF antiserum. Morphologic, histochemical, and factor VII antigen immunofluorescent studies were performed on the stromal cell population responsible for production of these stimulatory activities. In addition to “fat” cells, the stromal cells remaining after XRT were composed of two predominant cell populations. These included a major population of acid phosphatase and nonspecific esterase-positive macrophage-like cells and a minor population of factor VII antigen negative epithelioid cells.


Blood ◽  
1983 ◽  
Vol 61 (4) ◽  
pp. 770-774
Author(s):  
I Touw ◽  
B Lowenberg

Long-term cultures of human bone marrow were established for 5–13 wk to study the role of adipocytes in sustaining hematopoiesis. At weekly intervals, the numbers of nucleated cells and granulocyte-macrophage progenitor cells (GM-CFU) in culture were estimated in relation to the numbers of fat-containing cells present in the adherent stroma layer. In these quantifications, the numbers of GM-CFU trapped in the adherent cell layer were considered separately. It was found that the presence of adipocytes did not correlate with more active hematopoiesis. Fat cells appeared at late stages when successful cultures were being exhausted or early in cultures with poor activity. These observations suggest that human marrow continuous hematopoiesis in vitro, unlike hematopoiesis in the analogous murine bone marrow cultures, does not depend on the presence of adipocytes.


Blood ◽  
1978 ◽  
Vol 51 (2) ◽  
pp. 245-255 ◽  
Author(s):  
N Williams ◽  
H Jackson ◽  
AP Sheridan ◽  
MJ Jr Murphy ◽  
A Elste ◽  
...  

Abstract Megakaryocytes and their precursor cells were sustained in mouse bone marrow suspension cultures for over 4–6 wk. Megakaryocyte precursor cells were detected by their capacity to form colonies of megakaryocytes in semisolid agar cultures. Colony formation was dependent on the presence of medium conditioned by a myelomonocytic leukemic cell line (WEHI-3CM). Megakaryocytes from the liquid and semisolid cultures were identified by cytoplasmic acetylcholine esterase and by ultrastructural analysis. The suspension medium from the bone marrow liquid cultures which sustained megakaryopoiesis was not directly acitive in stimulating megakaryocyte colony formation in the semisolid agar cultures, but potentiated the number of colonies detected when WEHI-3CM was present. Bone marrow-conditioned medium increased the sensitivity of megakaryocyte progenitor cells to the stimulus in WEHI-3CM. Addition of the activities present in the two sources produced a quantitative assay for the detection of mouse megakaryocyte progenitor cells. These studies showed: (1) that no inductive regulator of in vitro clones of megakaryocytes was present in the supernatants from the long-term marrow cultures and, (2) that at least two factors were necessary for the induction of megakaryocyte progenitors to proliferate and differentiate in semisolid cultures in vitro.


Blood ◽  
1975 ◽  
Vol 45 (5) ◽  
pp. 665-670 ◽  
Author(s):  
Y Moriyama ◽  
JW Fisher

Abstract The effects of testosterone and erythropoietin (ESF) on erythroid colony formation in normal human bone marrow cultures were studied in vitro using a methyl cellulose gel system. Testosterone was found to produce a significant increase in erythroid colony formation at concentrations of 10–4–10-4M in vitro. In this system, the numbers of erythroid colonies formed per plate increased in direct proportion to the increase in the number of erythroid precursors inoculated as well as to the increase in the dose of ESF in vitro. In addition, a synergistic effect of a combination of testosterone and ESF on erythroid colony formation was seen when ESF was present at high concentrations. These data suggest that a greater number of erythropoietin-responsive cells are available for ESF to differentiate into the nucleated erythroid cell line in the presence of testosterone, indicating that the effect of a combination of testosterone and ESF is greater in enhancing erythropoiesis than the additive effects of either agent alone.


1995 ◽  
Vol 9 (4) ◽  
pp. 421-428 ◽  
Author(s):  
G.E.R. Schoeters ◽  
F. Vander Plaetse ◽  
H. Leppens ◽  
p. Van Vlasselaer ◽  
R. Van Den Heuvel

Blood ◽  
1984 ◽  
Vol 64 (2) ◽  
pp. 516-525 ◽  
Author(s):  
RJ Gualtieri ◽  
RK Shadduck ◽  
DG Baker ◽  
PJ Quesenberry

Abstract The nature of hematopoietic regulatory factors elaborated by the adherent (stromal) cells of long-term murine bone marrow cultures and the effect of in vitro stromal irradiation (XRT) on the production of these factors was investigated. Using an in situ stromal assay employing a double layer of semisolid agar, it was possible to demonstrate stromal elaboration of at least two colony-stimulating activities, ie, granulocyte/macrophage colony-stimulating activity (G/M- CSA) and megakaryocyte colony-stimulating activity (Meg-CSA). Exposure of the stroma to XRT resulted in dose-dependent elevations of both activities that correlated inversely with total myeloid cell mass as determined by concurrent reductions in total supernatant cell recoveries from irradiated cultures. Mixture experiments that combined control and irradiated stroma revealed that the hematopoietically active control stroma could block detection of XRT-related G/M-CSA elevations. These data implicate a local negative feedback mechanism in the regulation of hematopoiesis. Antiserum directed against purified L cell colony-stimulating factor (CSF) reduced granulocyte/macrophage colony formation in the target layer but did not effect the increased Meg-CSA. While a radioimmunoassay for L-cell type CSF was unable to detect significant differences in concentrated media from control and irradiated cultures, bioassays of these media revealed XRT-related G/M- CSA elevations. These results indicate that the G/M-CSA elaborated in these cultures is immunologically distinct from the Meg-CSA produced, and although distinct from L cell CSF, the G/M-CSA is crossreactive with the L cell CSF antiserum. Morphologic, histochemical, and factor VII antigen immunofluorescent studies were performed on the stromal cell population responsible for production of these stimulatory activities. In addition to “fat” cells, the stromal cells remaining after XRT were composed of two predominant cell populations. These included a major population of acid phosphatase and nonspecific esterase-positive macrophage-like cells and a minor population of factor VII antigen negative epithelioid cells.


Blood ◽  
1982 ◽  
Vol 60 (1) ◽  
pp. 130-135 ◽  
Author(s):  
C Eastment ◽  
E Denholm ◽  
I Katsnelson ◽  
E Arnold ◽  
PO Ts'o

Abstract Experiments on long-term murine bone marrow cultures indicate that the production and maintenance of the hematopoietic stem cell is dependent on the establishment of an adherent monolayer and a secondary repopulation of the culture with fresh marrow. In contrast, we have found that bone marrow cultures derived from the Syrian hamster do not require a repopulation step and produce stem cells that proliferate and differentiate for more than 12 wk in the absence of an adherent layer. Stem cells were grown in Fisher's medium (pH 7.0–7.2) containing 20% horse serum in a fully humidified atmosphere of 5% CO2 in air at 37 degrees C. Cultures were fed twice weekly by removal of half of the medium and supernatant cells and replacement with an equal volume of fresh medium. No hormones or exogenous growth factors were required for the maintenance of myeloid cells, monocytes, and megakaryocytes in either the adherent or suspension cells cultures.


Blood ◽  
1983 ◽  
Vol 61 (4) ◽  
pp. 770-774 ◽  
Author(s):  
I Touw ◽  
B Lowenberg

Abstract Long-term cultures of human bone marrow were established for 5–13 wk to study the role of adipocytes in sustaining hematopoiesis. At weekly intervals, the numbers of nucleated cells and granulocyte-macrophage progenitor cells (GM-CFU) in culture were estimated in relation to the numbers of fat-containing cells present in the adherent stroma layer. In these quantifications, the numbers of GM-CFU trapped in the adherent cell layer were considered separately. It was found that the presence of adipocytes did not correlate with more active hematopoiesis. Fat cells appeared at late stages when successful cultures were being exhausted or early in cultures with poor activity. These observations suggest that human marrow continuous hematopoiesis in vitro, unlike hematopoiesis in the analogous murine bone marrow cultures, does not depend on the presence of adipocytes.


Blood ◽  
1987 ◽  
Vol 69 (4) ◽  
pp. 1120-1127
Author(s):  
TA Alberico ◽  
JN Ihle ◽  
CM Liang ◽  
HE McGrath ◽  
PJ Quesenberry

Hematopoietic regulatory factors produced by adherent (stromal) cells in long-term murine bone marrow cultures have been investigated. Using an in situ double layer agar overlay system, we demonstrated that exposure of the stromal cells to 1,100-rad irradiation increased their activities in stimulating colony formation of FDC-P1, an interleukin 3 (IL 3)-responsive cell line. The colony-stimulating activities (CSAs) of the irradiated stroma also stimulated normal marrow cells to form granulocyte-macrophage, megakaryocyte, and mixed lineage colonies. Addition of the lectin pokeweed mitogen to the irradiated stroma increased the level of CSAs. The FDC-P1 CSA of the irradiated stroma was inhibited by antibodies directed against murine granulocyte- macrophage colony stimulating factor (GM-CSF) but not by those against murine IL 3. Stromal-derived CSA for marrow cells was also partially blocked by anti-GM-CSF antibodies, probably reflecting the presence of other CSAs such as CSF-1. This latter growth factor has been found to be present in conditioned media from Dexter stroma, but levels are not increased after irradiation or lectin exposure. Partially purified GM- CSF, like IL 3, stimulated FDC-P1 proliferation and granulocyte, macrophage, and megakaryocyte colony formation. These results indicate that the major terminal differentiating hormone elicited by irradiation or lectin exposure of murine marrow stromal cells is GM-CSF. This growth factor, along with CSF-1, can account for the differentiated progeny produced in this system: macrophages, granulocytes, and megakaryocytes.


Sign in / Sign up

Export Citation Format

Share Document