Constitution of a biphasic insulin response to glucose in human fetal pancreatic beta-cells with glucagon-like peptide 1

1995 ◽  
Vol 80 (12) ◽  
pp. 3779-3783 ◽  
Author(s):  
T. Otonkoski
1997 ◽  
Vol 155 (2) ◽  
pp. 369-376 ◽  
Author(s):  
N Dachicourt ◽  
P Serradas ◽  
D Bailbe ◽  
M Kergoat ◽  
L Doare ◽  
...  

The effects of glucagon-like peptide-1(7-36)-amide (GLP-1) on cAMP content and insulin release were studied in islets isolated from diabetic rats (n0-STZ model) which exhibited impaired glucose-induced insulin release. We first examined the possibility of re-activating the insulin response to glucose in the beta-cells of the diabetic rats using GLP-1 in vitro. In static incubation experiments, GLP-1 amplified cAMP accumulation (by 170%) and glucose-induced insulin release (by 140%) in the diabetic islets to the same extent as in control islets. Using a perifusion procedure, GLP-1 amplified the insulin response to 16.7 mM glucose by diabetic islets and generated a clear biphasic pattern of insulin release. The incremental insulin response to glucose in the presence of GLP-1, although lower than corresponding control values (1.56 +/- 0.37 and 4.53 +/- 0.60 pg/min per ng islet DNA in diabetic and control islets respectively), became similar to that of control islets exposed to 16.7 mM glucose alone (1.09 +/- 0.15 pg/min per ng islet DNA). Since in vitro GLP-1 was found to exert positive effects on the glucose competence of the residual beta-cells in the n0-STZ model. we investigated the therapeutic effect of in vivo GLP-1 administration on glucose tolerance and glucose-induced insulin release by n0-STZ rats. An infusion of GLP-1 (10 ng/min per kg; i.v.) in n0-STZ rats enhanced significantly (P < 0.01) basal plasma insulin levels, and, when combined with an i.v. glucose tolerance and insulin secretion test, it was found to improve (P < 0.05) glucose tolerance and the insulinogenic index, as compared with the respective values of these parameters before GLP-1 treatment.


Nature ◽  
1993 ◽  
Vol 361 (6410) ◽  
pp. 362-365 ◽  
Author(s):  
George G. Holz IV ◽  
Willem M. Kiihtreiber ◽  
Joel F. Habener

2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Alessandra Puddu ◽  
Roberta Sanguineti ◽  
Arianna Durante ◽  
Alessio Nencioni ◽  
François Mach ◽  
...  

Advanced glycation end products (AGEs) might play a pathophysiological role in the development of diabetes and its complications. AGEs negatively affect pancreatic beta-cell function and the expression of transcriptional factors regulating insulin gene. Glucagon-like peptide-1 (GLP-1), an incretin hormone that regulates glucose homeostasis, might counteract the harmful effects of AGEs on the beta cells in culture. The aim of this study was to identify the intracellular mechanisms underlying GLP-1-mediated protection from AGE-induced detrimental activities in pancreatic beta cells. HIT-T15 cells were cultured for 5 days with glycated serum (GS, consisting in a pool of AGEs), in the presence or absence of 10 nmol/L GLP-1. After evaluation of oxidative stress, we determined the expression and subcellular localization of proteins involved in maintaining redox balance and insulin gene expression, such as nuclear factor erythroid-derived 2 (Nrf2), glutathione reductase, PDX-1, and MafA. Then, we investigated proinsulin production. The results showed that GS increased oxidative stress, reduced protein expression of all investigated factors through proteasome activation, and decreased proinsulin content. Furthermore, GS reduced ability of PDX-1 and MafA to bind DNA. Coincubation with GLP-1 reversed these GS-mediated detrimental effects. In conclusion, GLP-1, protecting cells against oxidants, triggers protective intercellular pathways in HIT-T15 cells exposed to GS.


Diabetes ◽  
1998 ◽  
Vol 47 (1) ◽  
pp. 66-72 ◽  
Author(s):  
K. Moens ◽  
D. Flamez ◽  
C. Van Schravendijk ◽  
Z. Ling ◽  
D. Pipeleers ◽  
...  

2004 ◽  
Vol 286 (2) ◽  
pp. R269-R272 ◽  
Author(s):  
Bo Ahrén

It has been hypothesized that the potent insulinotropic action of the gut incretin hormone glucagon-like peptide-1 (GLP-1) is exerted not only through a direct action on the beta cells but may be partially dependent on sensory nerves. We therefore examined the influence of GLP-1 in mice rendered sensory denervated by neonatal administration of capsaicin performed at days 2 and 5 (50 mg/kg). Control mice were given vehicle. Results show that at 10-16 wk of age in control mice, intravenous GLP-1 at 0.1 or 10 nmol/kg augmented the insulin response to intravenous glucose (1 g/kg) in association with improved glucose elimination. In contrast, in capsaicin-pretreated mice, GLP-1 at 0.1 nmol/kg could not augment the insulin response to intravenous glucose and no effect on glucose elimination was observed. Nevertheless, at the high dose of 10 nmol/kg, GLP-1 augmented the insulin response to glucose in capsaicin-pretreated mice as efficiently as in control mice. The insulin response to GLP-1 from isolated islets was not affected by neonatal capsaicin, and, furthermore, the in vivo insulin response to glucose was augmented whereas that to arginine was not affected by capsaicin. It is concluded that GLP-1-induced insulin secretion at a low dose in mice is dependent on intact sensory nerves and therefore indirectly mediated and that this distinguishes GLP-1 from other examined insulin secretagogues.


Sign in / Sign up

Export Citation Format

Share Document