Relationship between Serum Inhibin A and B and Ovarian Follicle Development after a Daily Fixed Dose Administration of Recombinant Follicle-Stimulating Hormone

2000 ◽  
Vol 85 (2) ◽  
pp. 607-613 ◽  
Author(s):  
T. Eldar-Geva
2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Yanzhou Yang ◽  
Jie Chen ◽  
Hao Wu ◽  
Xiuying Pei ◽  
Qing Chang ◽  
...  

Ovarian follicular damages were caused by cryoinjury during the process of ovarian vitrification and ischemia/reperfusion during the process of ovarian transplantation. And appropriate FSH plays an important role in antiapoptosis during ovarian follicle development. Therefore, in this study, 0.3 IU/mL FSH was administered into medium during mouse ovarian cryopreservation by vitrification to ascertain the function of FSH on ovarian vitrification and avascular transplantation. The results suggested that the expressions of Cx37, Cx43, apoptotic molecular caspase-3, and angiogenesis molecular VEGF were confirmed using immunohistochemistry, western blotting, and real-time PCR, and the results suggested that the treatment with FSH remarkably increased the number of morphologically normal follicles in vitrified/warmed ovaries by upregulating the expression of Cx37, Cx43, VEGF, and VEGF receptor 2, but downregulating the expression of caspase-3. In addition, the vitrified/warmed ovaries were transplanted, and the related fertility was analyzed, and the results suggested that the fertility, neoangiogenesis, and follicle reserve were remarkably increased in the FSH administrated group. Taken together, administration of 0.3 IU/mL FSH during ovarian cryopreservation by vitrification can maintain ovarian survival during ovarian vitrification and increases the blood supply with avascular transplantation via upregulation of Cx43, Cx37, and VEGF/VEGFR2, as well as through its antiapoptotic effects.


2003 ◽  
Vol 177 (1) ◽  
pp. 45-55 ◽  
Author(s):  
TM Lovell ◽  
RT Gladwell ◽  
NP Groome ◽  
PG Knight

To study the potential involvement of inhibin A (inhA), inhibin B (inhB), activin A (actA) and follistatin (FS) in the recruitment of follicles into the preovulatory hierarchy, growing follicles (ranging from 1 mm to the largest designated F1) and the three most recent postovulatory follicles (POFs) were recovered from laying hens (n=11). With the exception of <4 mm follicles and POFs, follicle walls were dissected into separate granulosa (G) and theca (T) layers before extraction. Contents of inhA, inhB, actA and FS in tissue extracts were assayed using specific two-site ELISAs and results are expressed per mg DNA. InhB content of both G and T followed a similar developmental pattern, although the content was >4-fold higher in G than in T at all stages. InhB content was very low in follicles <4 mm but increased ~50-fold (P<0.0001) to peak in 7-9 mm follicles, before falling steadily as follicles entered and moved up the follicular hierarchy (40-fold; 8 mm vs F2). In stark contrast, inhA remained very low in prehierarchical follicles (< or =9 mm) but then increased progressively as follicles moved up the preovulatory hierarchy to peak in F1 (approximately 100-fold increase; P<0.0001); In F1 >97% of inhA was confined to the G layer whereas in 5-9 mm follicles inhA was only detected in the T layer. Both inhA and inhB contents of POFs were significantly reduced compared with F1. Follicular actA was mainly confined to the T layer although detectable levels were present in G from 9 mm; actA was low between 1 and 9 mm but increased sharply as follicles entered the preovulatory hierarchy (approximately 6-fold higher in F4; P<0.0001); levels then fell approximately 2-fold as the follicle progressed to F1. Like actA, FS predominated in the T although significant amounts were also present in the G of prehierarchical follicles (4-9 mm), in contrast to actA, which was absent from the G. The FS content of T rose approximately 3-fold from 6 mm to a plateau which was sustained until F1. In contrast, the FS content of G was greatest in prehierarchical follicles and fell approximately 4-fold in F4-F1 follicles. ActA and FS contents of POFs were reduced compared with F1. In vitro studies on follicle wall explants confirmed the striking divergence in the secretion of inhA and inhB during follicle development. These findings of marked stage-dependent differences in the expression of inhA, inhB, actA and FS proteins imply a significant functional role for these peptides in the recruitment and ordered progression of follicles within the avian ovary.


2015 ◽  
Vol 27 (1) ◽  
pp. 183
Author(s):  
T. Terazono ◽  
V. V. Luu ◽  
L. T. K. Do ◽  
M. Taniguchi ◽  
M. Takagi ◽  
...  

Follicle-stimulating hormone (FSH) alone can induce oestrus in bitches, but few reports describe oestrous induction by FSH because pregnant mare serum gonadotrophin (PMSG) has been more successful than FSH for oestrus induction. Real-time ultrasonography can show canine ovarian follicle development, but no method can determine or predict ovulation accurately. Moreover, the ovary location and size complicate imaging. Using ultrasonography, we investigated FSH treatment stimulation of canine ovary follicles, with clamping of the ovaries at a subcutaneous site. Bilateral malacotomy of four 5-year-old Beagle bitches (mean weight 10.3 ± 2.0 kg) with normal oestrous cycles was done using a ventral flank abdominal approach with routine techniques and materials. Each ovary that maintained blood circulation from the suspensory ligament was clamped at a subcutaneous site through muscles of the abdomen. After about six months of bilateral malacotomy, four bitches at the anestrous (two bitches) and diestrous (two bitches) stages of the oestrous cycle were given 0.5 Armour units of FSH twice daily for 5 days. Examinations with ovarian ultrasonography with 7.5 MHz sector transducer, vaginal cytology, and serum concentrations of progesterone and oestradiol were performed daily from the day before the start of FSH treatment through 7 days after FSH treatment. After 15 days of ovarian examination, each bitch received the same FSH treatment twice continually at 15-day intervals. No serosanguineous vaginal discharge was observed during the ovarian examination. The concentrations of progesterone (<0.045–9.6 ng mL–1) and oestradiol (<9.7–81.4 pg mL–1) varied through all treatments. Comparison of the concentrations of progesterone (<0.045–7.6 ng mL–1) and oestradiol (<9.7–30.3 pg mL–1) at the start of FSH administration in each trial revealed that elevated concentrations of both progesterone and oestradiol were observed in the first treatment in 3 bitches. Regarding the second and third treatments, no elevation of concentration was found for progesterone or oestradiol. A new follicular growth was observed in 1 animal after the third FSH treatment, but no follicular growth was found for the other animals. No correlation was found between follicular development and the profile of either progesterone or oestradiol. Ultrasonography proved that FSH stimulation alone cannot induce follicular growth by a single treatment, but it might increase the levels of progesterone and oestradiol, which are not correlated with follicular development and oestrous cycles at the start of FSH treatment.


Sign in / Sign up

Export Citation Format

Share Document