scholarly journals Mechanisms of Osteoblastic Bone Metastasis in Prostate Cancer: Role of Prostatic Acid Phosphatase

2019 ◽  
Vol 3 (3) ◽  
pp. 655-664 ◽  
Author(s):  
Mariana Quiroz-Munoz ◽  
Sudeh Izadmehr ◽  
Dushyanthy Arumugam ◽  
Beatrice Wong ◽  
Alexander Kirschenbaum ◽  
...  

Abstract Prostate cancer (PCa) preferentially metastasizes to bone, leading to complications including severe pain, fractures, spinal cord compression, bone marrow suppression, and a mortality of ∼70%. In spite of recent advances in chemo-, hormonal, and radiation therapies, bone-metastatic, castrate-resistant PCa is incurable. PCa is somewhat unique among the solid tumors in its tendency to produce osteoblastic lesions composed of hypermineralized bone with multiple layers of poorly organized type I collagen fibrils that have reduced mechanical strength. Many of the signaling pathways that control normal bone homeostasis are at play in pathologic PCa bone metastases, including the receptor activator of nuclear factor-κB/receptor activator of nuclear factor-κB ligand/osteoprotegerin system. A number of PCa-derived soluble factors have been shown to induce the dysfunctional osteoblastic phenotype. However, therapies directed at these osteoblastic-stimulating proteins have yielded disappointing clinical results to date. One of the soluble factors expressed by PCa cells, particularly in bone metastases, is prostatic acid phosphatase (PAP). Human PAP is a prostate epithelium-specific secretory protein that was the first tumor marker ever described. Biologically, PAP exhibits both phosphatase activity and ecto-5′-nucleotidase activity, generating extracellular phosphate and adenosine as the final products. Accumulating evidence indicates that PAP plays a causal role in the osteoblastic phenotype and aberrant bone mineralization seen in bone-metastatic, castrate-resistant PCa. Targeting PAP may represent a therapeutic approach to improve morbidity and mortality from PCa osteoblastic bone metastases.

Endocrinology ◽  
2016 ◽  
Vol 157 (12) ◽  
pp. 4526-4533 ◽  
Author(s):  
Alexander Kirschenbaum ◽  
Sudeh Izadmehr ◽  
Shen Yao ◽  
Kieley L. O’Connor-Chapman ◽  
Alan Huang ◽  
...  

Prostate cancer (PCa) is unique in its tendency to produce osteoblastic (OB) bone metastases. There are no existing therapies that specifically target the OB phase that affects 90% of men with bone metastatic disease. Prostatic acid phosphatase (PAP) is secreted by PCa cells in OB metastases and increases OB growth, differentiation, and bone mineralization. The purpose of this study was to investigate whether PAP effects on OB bone metastases are mediated by autocrine and/or paracrine alterations in the receptor activator of nuclear factor κ-B (RANK)/RANK ligand (RANKL)/osteoprotegerin (OPG) system. To investigate whether PAP modulated these factors and altered the bone reaction, we knocked down PAP expression in VCaP cells and stably overexpressed PAP in PC3M cells, both derived from human PCa bone metastases. We show that knockdown of PAP in VCaP cells decreased OPG while increasing RANK/RANKL expression. Forced overexpression of PAP in PC3M cells had the inverse effect, increasing OPG while decreasing RANK/RANKL expression. Coculture of PCa cells with MC3T3 preosteoblasts also revealed a role for secretory PAP in OB-PCa cross talk. Reduced PAP expression in VCaP cells decreased MC3T3 proliferation and differentiation and reduced their OPG expression. PAP overexpression in PC3M cells altered the bone phenotype creating OB rather than osteolytic lesions in vivo using an intratibial model. These findings demonstrate that PAP secreted by PCa cells in OB bone metastases increases OPG and plays a critical role in the vicious cross talk between cancer and bone cells. These data suggest that inhibition of secretory PAP may be an effective strategy for PCa OB bone lesions.


2013 ◽  
Vol 189 (4) ◽  
pp. 1547-1552 ◽  
Author(s):  
Yong Hyun Park ◽  
Su Yeon Seo ◽  
Eunhye Lee ◽  
Ja Hyeon Ku ◽  
Hyeon Hoe Kim ◽  
...  

2014 ◽  
Vol 65 (2) ◽  
pp. 278-286 ◽  
Author(s):  
Benjamin A. Gartrell ◽  
Robert E. Coleman ◽  
Karim Fizazi ◽  
Kurt Miller ◽  
Fred Saad ◽  
...  

2020 ◽  
Vol 4 (Supplement_1) ◽  
Author(s):  
Sudeh Izadmehr ◽  
Shen Yao ◽  
Alexander Kirschenbaum ◽  
Alice C Levine

Abstract INTRODUCTION: Prostatic acid phosphatase (PAP) is a soluble factor secreted by prostate luminal epithelial cells. PAP expression correlates with prostate cancer (PCa) bone metastases and poor survival. The androgenic regulation of PAP in prostate development and tumorigenesis is not fully understood. We investigated the relationship between PAP and androgens in human prostate specimens and in vivo. HYPOTHESIS AND OBJECTIVES: We hypothesized that PAP expression was independent of androgens. Our objectives were to determine the immunohistochemical expression of PAP in human fetal prostate tissue, human PCa bone metastases, and xenograft and surgical castration mouse models. METHODS: Immunohistochemical staining for PAP and three androgen-regulated proteins, the Androgen Receptor (AR), Prostate-Specific Antigen (PSA), and ETS-related gene (ERG) protein, was carried out on human fetal prostate (9.5, 11.5, 13, 16.5, 18 and 20 weeks of gestational age), archival human PCa bone metastases, and PCa mouse models. For xenograft studies, PAP-expressing PCa cell lines, LNCaP, C42B, and VCaP cells, were inoculated subcutaneously into SCID mice. A castration study with surgical or sham castration was performed after VCaP tumors were palpable. Mouse tumor growth and weight were measured biweekly, and tumor tissue isolated after mouse sacrifice. RESULTS: PAP expression was observed in the fetal prostate as early as 11.5 weeks of gestational age. Strong PAP expression was noted in all human PCa bone metastases examined, both treatment-naive and castrate-resistant (n=10). However, AR and ERG expression was absent in two of four castrate-resistant specimens. PSA was weakly expressed in human castration-resistant bone metastatic prostate specimens. In vivo, PAP expression was observed in all tumor models; however, the expression of PAP differed among androgen-sensitive models; LNCaP (low PAP), C42B (moderate PAP) and VCaP (high PAP). Castrated VCaP tumors underwent tumor stasis and were significantly smaller compared to intact mice. Strong expression of PAP was observed after castration. In contrast, AR, PSA, and ERG expression were reduced in castrated VCaP tumors compared to tumors from intact mice. Double staining of tumors for PAP and AR demonstrated a population of cells that were positive for PAP but negative for AR expression located in hypoxic areas near necrosis. CONCLUSIONS: Our findings demonstrated that PAP is expressed early in normal human fetal prostate development prior to the secretion of significant androgens or expression of AR. In mouse xenografts and human PCa bone metastases, androgens did not significantly regulate PAP expression. These data demonstrate that PAP is a marker of early progenitor cells in the normal prostate and is persistently expressed after castration. PAP may be a suitable target for the treatment of castration-resistant metastatic disease.


Sign in / Sign up

Export Citation Format

Share Document