A mutation in the fast skeletal muscle troponin I gene causes myopathy and distal arthrogryposis

Neurology ◽  
2006 ◽  
Vol 67 (4) ◽  
pp. 597-601 ◽  
Author(s):  
E. Kimber ◽  
H. Tajsharghi ◽  
A. -K. Kroksmark ◽  
A. Oldfors ◽  
M. Tulinius
2006 ◽  
Vol 16 (9-10) ◽  
pp. 689
Author(s):  
E. Kimber ◽  
H. Tajsharghi ◽  
A.-K. Kroksmark ◽  
A. Oldfors ◽  
M. Tulinius

1988 ◽  
Vol 8 (12) ◽  
pp. 5072-5079 ◽  
Author(s):  
P L Hallauer ◽  
K E Hastings ◽  
A C Peterson

We have produced seven lines of transgenic mice carrying the quail gene encoding the fast skeletal muscle-specific isoform of troponin I (TnIf). The quail DNA included the entire TnIf gene, 530 base pairs of 5'-flanking DNA, and 1.5 kilobase pairs of 3'-flanking DNA. In all seven transgenic lines, normally initiated and processed quail TnIf mRNA was expressed in skeletal muscle, where it accumulated to levels comparable to that in quail muscle. Moreover, in the three lines tested, quail TnIf mRNA levels were manyfold higher in a fast skeletal muscle (gastrocnemius) than in a slow skeletal muscle (soleus). We conclude that the cellular mechanisms directing muscle fiber type-specific TnIf gene expression are mediated by cis-regulatory elements present on the introduced quail DNA fragment and that they control TnIf expression by affecting the accumulation of TnIf mRNA. These elements have been functionally conserved since the evolutionary divergence of birds and mammals, despite the major physiological and morphological differences existing between avian (tonic) and mammalian (twitch) slow muscles. In lines of transgenic mice carrying multiple tandemly repeated copies of the transgene, an aberrant quail TnIf transcript (differing from normal TnIf mRNA upstream of exon 2) also accumulated in certain tissues, particularly lung, brain, spleen, and heart tissues. However, this aberrant transcript was not detected in a transgenic line which carries only a single copy of the quail gene.


2000 ◽  
Vol 279 (4) ◽  
pp. C1067-C1077 ◽  
Author(s):  
Jian-Ping Jin ◽  
Aihua Chen ◽  
Ozgur Ogut ◽  
Qi-Quan Huang

Troponin T (TnT) is an essential element in the thin filament Ca2+-regulatory system controlling striated muscle contraction. Alternative RNA splicing generates developmental and muscle type-specific TnT isoforms differing in the hypervariable NH2-terminal region. Using avian fast skeletal muscle TnT containing a metal-binding segment, we have demonstrated a role of the NH2-terminal domain in modulating the conformation of TnT (Wang J and Jin JP. Biochemistry 37: 14519–14528, 1998). To further investigate the structure-function relationship of TnT, the present study constructed and characterized a recombinant protein in which the metal-binding peptide present in avian fast skeletal muscle TnT was fused to the NH2 terminus of mouse slow skeletal muscle TnT. Metal ion or monoclonal antibody binding to the NH2-terminal extension induced conformational changes in other domains of the model TnT molecule. This was shown by the altered affinity to a monoclonal antibody against the COOH-terminal region and a polyclonal antiserum recognizing multiple epitopes. Protein binding assays showed that metal binding to the NH2-terminal extension had effects on the interaction of TnT with troponin I, troponin C, and most significantly, tropomyosin. The data indicate that the NH2-terminal Tx [4–7 repeats of a sequence motif His-(Glu/Ala)-Glu-Ala-His] extension confers a specific conformational modulation in the slow skeletal muscle TnT.


2008 ◽  
Vol 369 (4) ◽  
pp. 1034-1040 ◽  
Author(s):  
Yuping Li ◽  
Bin Chen ◽  
Jian Chen ◽  
Guiyu Lou ◽  
Shiuan Chen ◽  
...  

1976 ◽  
Vol 159 (3) ◽  
pp. 633-641 ◽  
Author(s):  
R J A. Grand ◽  
J M Wilkinson ◽  
L E More

The complete amino acid sequence of troponin I from rabbit cardiac muscle was determined by the isolation of four unique CNBr fragments, together with overlapping tryptic peptides containing radioactive methionine residues. Overlap data for residues 35-36, 93-94 and 140-145 are incomplete, the sequence at these positions being based on homology with the sequence of the fast-skeletal-muscle protein. Cardiac troponin I is a single polypeptide chain of 206 residues with mol.wt. 23550 and an extinction coefficient, E 1%,1cm/280, of 4.37. The protein has a net positive charge of 14 and is thus somewhat more basic than troponin I from fast-skeletal muscle. Comparison of the sequences of troponin I from cardiac and fast skeletal muscle show that the cardiac protein has 26 extra residues at the N-terminus which account for the larger size of the protein. In the remainder of sequence there is a considerable degree of homology, this being greater in the C-terminal two-thirds of the molecule. The region in the cardiac protein corresponding to the peptide with inhibitory activity from the fast-skeletal-muscle protein is very similar and it seems unlikely that this is the cause of the difference in inhibitory activity between the two proteins. The region responsible for binding troponin C, however, possesses a lower degree of homology. Detailed evidence on which the sequence is based has been deposited as Supplementary Publication SUP 50072 (20 pages), at the British Library Lending Division, Boston Spa, Wetherby, West Yorkshire LS23 7QB, U.K., from whom copies may be obtained on the terms given in Biochem. J. (1976) 153, 5.


Sign in / Sign up

Export Citation Format

Share Document