Transient hypoxemia induced by cortical electrical stimulation

Neurology ◽  
2020 ◽  
Vol 94 (22) ◽  
pp. e2323-e2336
Author(s):  
Marine Loizon ◽  
Philippe Ryvlin ◽  
Benoit Chatard ◽  
Julien Jung ◽  
Romain Bouet ◽  
...  

ObjectiveTo identify which cortical regions are associated with direct electrical stimulation (DES)–induced alteration of breathing significant enough to impair pulse oximetry (SpO2).MethodsEvolution of SpO2 after 1,352 DES was analyzed in 75 patients with refractory focal epilepsy who underwent stereo-EEG recordings. For each DES, we assessed the change in SpO2 from 30 seconds prior to DES onset to 120 seconds following the end of the DES. The primary outcome was occurrence of stimulation-induced transient hypoxemia as defined by decrease of SpO2 ≥5% within 60 seconds after stimulation onset as compared to pre-DES SpO2 or SpO2 nadir <90% during at least 5 seconds. Localization of the stimulated contacts was defined according to MarsAtlas brain parcellation and Freesurfer segmentation.ResultsA stimulation-induced transient hypoxemia was observed after 16 DES (1.2%) in 10 patients (13%), including 6 in whom SpO2 nadir was <90%. Among these 16 DES, 7 (44%) were localized within the perisylvian cortex. After correction for individual effects and the varying number of DES contributed by each person, significant decrease of SpO2 was significantly associated with the localization of DES (p = 0.019).ConclusionThough rare, a significant decrease of SpO2 could be elicited by cortical direct electrical stimulation outside the temporo-limbic structures, most commonly after stimulation of the perisylvian cortex.

2016 ◽  
Vol 127 (2) ◽  
pp. 1752-1754 ◽  
Author(s):  
Marion Vincent ◽  
Olivier Rossel ◽  
Bénédicte Poulin-Charronnat ◽  
Guillaume Herbet ◽  
Mitsuhiro Hayashibe ◽  
...  

1982 ◽  
Vol 75 (3) ◽  
pp. 589-599 ◽  
Author(s):  
M.Mazher Jaweed ◽  
Gerald J. Herbison ◽  
John F. Ditunno

2014 ◽  
Vol 37 (3) ◽  
pp. 527-533 ◽  
Author(s):  
Andrej Šteňo ◽  
Vladimír Hollý ◽  
Martin Fabian ◽  
Matúš Kuniak ◽  
Gabriela Timárová ◽  
...  

2018 ◽  
Vol 15 (2) ◽  
pp. 026015 ◽  
Author(s):  
Leah Muller ◽  
John D Rolston ◽  
Neal P Fox ◽  
Robert Knowlton ◽  
Vikram R Rao ◽  
...  

1993 ◽  
Vol 264 (3) ◽  
pp. G486-G491 ◽  
Author(s):  
G. Tougas ◽  
P. Hudoba ◽  
D. Fitzpatrick ◽  
R. H. Hunt ◽  
A. R. Upton

Cerebral evoked responses following direct electrical stimulation of the vagus and esophagus were compared in 8 epileptic subjects and with those recorded after esophageal stimulation in 12 healthy nonepileptic controls. Direct vagal stimulation was performed using a left cervical vagal pacemaker, which is used in the treatment of epilepsy. Esophageal stimulation was obtained with the use of an esophageal assembly incorporating two electrodes positioned 5 and 20 cm orad to the lower esophageal sphincter. Evoked potential responses were recorded with the use of 20 scalp electrodes. The evoked potential responses consisted of three distinct negative peaks and were similar with the use of either vagal or esophageal stimulation. The measured conduction velocity of the afferent response was 7.5 m/s in epileptic subjects and 10 m/s in healthy controls, suggesting that afferent conduction is through A delta-fibers rather than slower C afferent fibers. We conclude that the cortical-evoked potential responses following esophageal electrical stimulation are comparable to direct electrical stimulation of the vagus nerve and involve mostly A delta-fibers. This approach provides a method for the assessment of vagal afferent gastrointestinal sensory pathways in health and disease.


Sign in / Sign up

Export Citation Format

Share Document