scholarly journals Central limit theorems for additive functionals of the simple exclusion process

2006 ◽  
Vol 34 (1) ◽  
pp. 427-428 ◽  
Author(s):  
S. Sethuraman
2021 ◽  
Vol 382 (1) ◽  
pp. 1-47
Author(s):  
Henk Bruin ◽  
Dalia Terhesiu ◽  
Mike Todd

AbstractWe obtain limit theorems (Stable Laws and Central Limit Theorems, both standard and non-standard) and thermodynamic properties for a class of non-uniformly hyperbolic flows: almost Anosov flows, constructed here. The link between the pressure function and limit theorems is studied in an abstract functional analytic framework, which may be applicable to other classes of non-uniformly hyperbolic flows.


Author(s):  
Leonid Petrov ◽  
Axel Saenz

AbstractWe obtain a new relation between the distributions $$\upmu _t$$ μ t at different times $$t\ge 0$$ t ≥ 0 of the continuous-time totally asymmetric simple exclusion process (TASEP) started from the step initial configuration. Namely, we present a continuous-time Markov process with local interactions and particle-dependent rates which maps the TASEP distributions $$\upmu _t$$ μ t backwards in time. Under the backwards process, particles jump to the left, and the dynamics can be viewed as a version of the discrete-space Hammersley process. Combined with the forward TASEP evolution, this leads to a stationary Markov dynamics preserving $$\upmu _t$$ μ t which in turn brings new identities for expectations with respect to $$\upmu _t$$ μ t . The construction of the backwards dynamics is based on Markov maps interchanging parameters of Schur processes, and is motivated by bijectivizations of the Yang–Baxter equation. We also present a number of corollaries, extensions, and open questions arising from our constructions.


Sign in / Sign up

Export Citation Format

Share Document