scholarly journals Quantitative propagation of chaos for generalized Kac particle systems

2016 ◽  
Vol 26 (2) ◽  
pp. 892-916 ◽  
Author(s):  
Roberto Cortez ◽  
Joaquin Fontbona
1997 ◽  
Vol 34 (2) ◽  
pp. 346-362 ◽  
Author(s):  
Shui Feng

A result for the propagation of chaos is obtained for a class of pure jump particle systems of two species with mean field interaction. This result leads to the corresponding result for particle systems with one species and the argument used is valid for particle systems with more than two species. The model is motivated by the study of the phenomenon of self-organization in biology, chemistry and physics, and the technical difficulty is the unboundedness of the jump rates.


1997 ◽  
Vol 34 (02) ◽  
pp. 346-362 ◽  
Author(s):  
Shui Feng

A result for the propagation of chaos is obtained for a class of pure jump particle systems of two species with mean field interaction. This result leads to the corresponding result for particle systems with one species and the argument used is valid for particle systems with more than two species. The model is motivated by the study of the phenomenon of self-organization in biology, chemistry and physics, and the technical difficulty is the unboundedness of the jump rates.


2019 ◽  
Vol 56 (12) ◽  
pp. 787-796
Author(s):  
O. Furat ◽  
B. Prifling ◽  
D. Westhoff ◽  
M. Weber ◽  
V. Schmidt

2021 ◽  
Vol 183 (3) ◽  
Author(s):  
Mario Ayala ◽  
Gioia Carinci ◽  
Frank Redig

AbstractWe study the symmetric inclusion process (SIP) in the condensation regime. We obtain an explicit scaling for the variance of the density field in this regime, when initially started from a homogeneous product measure. This provides relevant new information on the coarsening dynamics of condensing interacting particle systems on the infinite lattice. We obtain our result by proving convergence to sticky Brownian motion for the difference of positions of two SIP particles in the sense of Mosco convergence of Dirichlet forms. Our approach implies the convergence of the probabilities of two SIP particles to be together at time t. This, combined with self-duality, allows us to obtain the explicit scaling for the variance of the fluctuation field.


Sign in / Sign up

Export Citation Format

Share Document