Practical Metallography
Latest Publications


TOTAL DOCUMENTS

5751
(FIVE YEARS 271)

H-INDEX

11
(FIVE YEARS 3)

Published By Carl Hanser Verlag Gmbh & Co Kg

2195-8599, 0032-678x

2021 ◽  
Vol 58 (12) ◽  
pp. 745-804

2021 ◽  
Vol 58 (12) ◽  
pp. 763-780
Author(s):  
P. Zhuang ◽  
H. Shi ◽  
Z. Zhang ◽  
R. Chai ◽  
J. Zan ◽  
...  

Abstract In this work, a solution heat treatment of Al-Si-Mg-Cu casting alloy was analyzed. A new short solution heat treatment (SHT) with only 60 min has been allowed. The results revealed that this short SHT enables the improvement of the dendritic structure and the spheroidization of the eutectic silicon particles. Furthermore, the alloy showed improved mechanical properties when compared to the same alloy subjected to a longer SHT of 4 h. It was observed that increasing the SHT temperature can accelerate the dissolution and homogenization of the silicon particles and intermetallic precipitates in the matrix.


2021 ◽  
Vol 58 (12) ◽  
pp. 794-798
Author(s):  
Magdalena Speicher ◽  
Rudi Scheck

2021 ◽  
Vol 58 (12) ◽  
pp. 803-803

2021 ◽  
Vol 58 (12) ◽  
pp. 748-762
Author(s):  
S. Preißler ◽  
M. Witte ◽  
T. Evertz

Abstract The description of the solidification process in casting processes with varying product thickness is characterized based on solidification structures, segregations as well as the primary and secondary microstructure. In near-net-shape casting processes, it is particularly challenging to achieve microstructure homogeneity in the as-cast condition, since the degree of forming in production processes up to hot or cold strip is lower than in the production of slabs or thin slabs. The density of shrinkage porosity in belt-cast high-manganese steel (HMnS) will be determined quantitatively using polished microsections. Following the visualization of the primary cast structure, light microscopic images will be obtained using different tint etches. For the evaluation of secondary dendrite arm spacing (SDAS), internally developed software based on ImageJ and Matlab will be used.


2021 ◽  
Vol 58 (12) ◽  
pp. 781-792
Author(s):  
A. Neidel ◽  
T. Gädicke ◽  
S. Riesenbeck ◽  
S. Wallich

Abstract In this contribution, a case study is presented describing the failure of a combustion chamber assembly in a non-OEM (Original Equipment Manufacturer) gas turbine engine used for power generation. It showed how even advanced fabrication methods, such as Electron Beam (EB) welding, could trigger fatigue fracture, even if there are no material defects, no weld imperfections, no fabrication flaws, and even if everything is within specified limits. As is so often the case in component failures, the fact that failures occur anyway, despite the absence of out-of-spec material properties, and even though there were no fabrication flaws, is attributable to the design; which is often not sturdy enough to withstand unexpected dynamic loading.


2021 ◽  
Vol 58 (12) ◽  
pp. 747-747

Sign in / Sign up

Export Citation Format

Share Document