scholarly journals Asymptotic behavior of the occupancy density for obliquely reflected Brownian motion in a half-plane and Martin boundary

2021 ◽  
Vol 31 (6) ◽  
Author(s):  
Philip A. Ernst ◽  
Sandro Franceschi
2019 ◽  
Vol 20 (03) ◽  
pp. 2050015 ◽  
Author(s):  
Hua Zhang

In this paper, we prove a moderate deviation principle for the multivalued stochastic differential equations whose proof are based on recently well-developed weak convergence approach. As an application, we obtain the moderate deviation principle for reflected Brownian motion.


2014 ◽  
Vol 154 (6) ◽  
pp. 1550-1568 ◽  
Author(s):  
Valentina Cammarota ◽  
Alessandro De Gregorio ◽  
Claudio Macci

2011 ◽  
Vol 13 (06) ◽  
pp. 1077-1093
Author(s):  
NITAY ARCUSIN ◽  
ROSS G. PINSKY

Let D ⊂ Rd be a bounded domain and let [Formula: see text] denote the space of probability measures on D. Consider a Brownian motion in D which is killed at the boundary and which, while alive, jumps instantaneously according to a spatially dependent exponential clock with intensity γV to a new point, according to a distribution [Formula: see text]. From its new position after the jump, the process repeats the above behavior independently of what has transpired previously. The generator of this process is an extension of the operator -Lγ,μ, defined by [Formula: see text] with the Dirichlet boundary condition, where Cμ is the "μ-centering" operator defined by [Formula: see text] The principal eigenvalue, λ0(γ, μ), of Lγ, μ governs the exponential rate of decay of the probability of not exiting D for large time. We study the asymptotic behavior of λ0(γ, μ) as γ → ∞. In particular, if μ possesses a density in a neighborhood of the boundary, which we call μ, then [Formula: see text] If μ and all its derivatives up to order k - 1 vanish on the boundary, but the kth derivative does not vanish identically on the boundary, then λ0(γ, μ) behaves asymptotically like [Formula: see text], for an explicit constant ck.


1981 ◽  
Vol 41 (2) ◽  
pp. 345-361 ◽  
Author(s):  
J. Michael Harrison ◽  
Martin I. Reiman

2014 ◽  
Vol 2014 ◽  
pp. 1-14
Author(s):  
Yuquan Cang ◽  
Junfeng Liu ◽  
Yan Zhang

We study the asymptotic behavior of the sequenceSn=∑i=0n-1K(nαSiH1)(Si+1H2-SiH2),asntends to infinity, whereSH1andSH2are two independent subfractional Brownian motions with indicesH1andH2, respectively.Kis a kernel function and the bandwidth parameterαsatisfies some hypotheses in terms ofH1andH2. Its limiting distribution is a mixed normal law involving the local time of the sub-fractional Brownian motionSH1. We mainly use the techniques of Malliavin calculus with respect to sub-fractional Brownian motion.


1992 ◽  
Vol 29 (04) ◽  
pp. 996-1002 ◽  
Author(s):  
R. J. Williams

A direct derivation is given of a formula for the normalized asymptotic variance parameters of the boundary local times of reflected Brownian motion (with drift) on a compact interval. This formula was previously obtained by Berger and Whitt using an M/M/1/C queue approximation to the reflected Brownian motion. The bivariate Laplace transform of the hitting time of a level and the boundary local time up to that hitting time, for a one-dimensional reflected Brownian motion with drift, is obtained as part of the derivation.


2012 ◽  
Vol 49 (3) ◽  
pp. 883-887 ◽  
Author(s):  
Offer Kella

The goal is to identify the class of distributions to which the distribution of the maximum of a Lévy process with no negative jumps and negative mean (equivalently, the stationary distribution of the reflected process) belongs. An explicit new distributional identity is obtained for the case where the Lévy process is an independent sum of a Brownian motion and a general subordinator (nondecreasing Lévy process) in terms of a geometrically distributed sum of independent random variables. This generalizes both the distributional form of the standard Pollaczek-Khinchine formula for the stationary workload distribution in the M/G/1 queue and the exponential stationary distribution of a reflected Brownian motion.


2017 ◽  
Vol 45 (5) ◽  
pp. 2971-3037 ◽  
Author(s):  
Krzysztof Burdzy ◽  
Zhen-Qing Chen ◽  
Donald Marshall ◽  
Kavita Ramanan

Sign in / Sign up

Export Citation Format

Share Document