scholarly journals A localization theorem for the planar Coulomb gas in an external field

2021 ◽  
Vol 26 (none) ◽  
Author(s):  
Yacin Ameur
2018 ◽  
Vol 2018 (3) ◽  
pp. 147-155
Author(s):  
M.M. Rakhmatullaev ◽  
M.A. Rasulova

2021 ◽  
Vol 917 ◽  
Author(s):  
Sudip Shyam ◽  
Pranab Kumar Mondal ◽  
Balkrishna Mehta

Abstract


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Nathan Haouzi ◽  
Can Kozçaz

Abstract Starting from type IIB string theory on an ADE singularity, the (2, 0) little string arises when one takes the string coupling gs to 0. In this setup, we give a unified description of the codimension-two defects of the little string, labeled by a simple Lie algebra $$ \mathfrak{g} $$ g . Geometrically, these are D5 branes wrapping 2-cycles of the singularity, subject to a certain folding operation when the algebra is non simply-laced. Equivalently, the defects are specified by a certain set of weights of $$ {}^L\mathfrak{g} $$ L g , the Langlands dual of $$ \mathfrak{g} $$ g . As a first application, we show that the instanton partition function of the $$ \mathfrak{g} $$ g -type quiver gauge theory on the defect is equal to a 3-point conformal block of the $$ \mathfrak{g} $$ g -type deformed Toda theory in the Coulomb gas formalism. As a second application, we argue that in the (2, 0) CFT limit, the Coulomb branch of the defects flows to a nilpotent orbit of $$ \mathfrak{g} $$ g .


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Mónica Graf ◽  
Jorge Íñiguez

AbstractThe electrocaloric effect, that is, the temperature change experienced by an insulator upon application of an electric field, offers promising ecofriendly alternatives to refrigeration. However, the theoretical treatments of this response are mostly case specific and lack a unified picture revealing the similarities and differences among the various known effects. Here, we show that the electrocaloric effect lends itself to a straightforward interpretation when expressed as a Taylor series in the external field. Our formalism explains in a unified and simple way the most notable small-field effects reported in the literature, namely the so-called normal and inverse electrocaloric responses, corresponding to an increase or decrease of temperature under applied field, as usually found in ferroelectrics or antiferroelectrics, respectively. This helps us to clarify their physical interpretation. We then discuss in detail atomistic simulations for the prototype ferroelectric PbTiO3, explicitly evaluating subtle predictions of the theory, such as the occurrence of competing contributions to the electrocaloric response.


Sign in / Sign up

Export Citation Format

Share Document