coulomb gas
Recently Published Documents


TOTAL DOCUMENTS

314
(FIVE YEARS 27)

H-INDEX

34
(FIVE YEARS 2)

Author(s):  
Robert Paul Salazar Romero ◽  
Camilo Bayona Roa ◽  
Gabriel Tellez

Abstract In this work, we study the gapped Surface Electrode (SE), a planar system composed of two-conductor flat regions at different potentials with a gap G between both sheets. The computation of the electric field and the surface charge density requires solving Laplace’s equation subjected to Dirichlet conditions (on the electrodes) and Neumann Boundary Conditions over the gap. In this document, the GSE is modeled as a Two-Dimensional Classical Coulomb Gas having punctual charges +q and −q on the inner and outer electrodes, respectively, interacting with an inverse power law 1~r-potential. The coupling parameter Γ between particles inversely depends on temperature and is proportional to q2. Precisely, the density charge arises from the equilibrium states via Monte Carlo (MC) simulations. We focus on the coupling and the gap geometry effect. Mainly on the distribution of particles in the circular and the harmonically-deformed gapped SE. MC simulations differ from electrostatics in the strong coupling regime. The electrostatic approximation and the MC simulations agree in the weak coupling regime where the system behaves as two interacting ionic fluids. That means that temperature is crucial in finite-size versions of the gapped SE where the density charge cannot be assumed fully continuous as the coupling among particles increases. Numerical comparisons are addressed against analytical descriptions based on an electric vector potential approach, finding good agreement.


2022 ◽  
Author(s):  
S. Y. Wang ◽  
Yijun Yu ◽  
Jinxiang Hao ◽  
Yang Feng ◽  
Jinjiang Zhu ◽  
...  

Abstract Monolayers of a prototypical cuprate high transition-temperature (TC) superconductor Bi2Sr2CaCu2O8+δ (Bi2212) was recently found to show TC and other electronic properties similar to those of the bulk. The robustness of superconductivity in an ideal two-dimensional (2D) system was an intriguing fact that defied the Mermin-Wagner theorem. Here, we took advantage of the high sensitivity of scanning SQUID susceptometry to image the phase stiffness throughout the phase transition of Bi2212 in the 2D limit. We found susceptibility oscillated with flux between diamagnetism and paramagnetism in a Fraunhofer-like pattern up till TC. The temperature and sample size-dependence of the modulation period agreed well with our Coulomb gas analogy of a finite 2D system based on Berezinskii–Kosterlitz–Thouless (BKT) transition. In the multilayers, the susceptibility oscillation differed in a small temperature regime below TC in consistent with a dimensional-crossover led by interlayer coupling. Serving as strong evidence of BKT transition in the bulk, there appeared a sharp superfluid density jump at zero-field and paramagnetism at small fields just below TC. These results unified the phase transitions from the monolayer Bi2212 to the bulk as BKT transition with finite interlayer coupling. This elucidating picture favored the pre-formed pairs scenario for the underdoped cuprates regardless of lattice dimensionality.


2021 ◽  
Vol 186 (1) ◽  
Author(s):  
Diana Conache ◽  
Markus Heydenreich ◽  
Franz Merkl ◽  
Silke W. W. Rolles

AbstractWe study the behavior of the variance of the difference of energies for putting an additional electric unit charge at two different locations in the two-dimensional lattice Coulomb gas in the high-temperature regime. For this, we exploit the duality between this model and a discrete Gaussian model. Our estimates follow from a spontaneous symmetry breaking in the latter model.


2021 ◽  
Vol 2021 (12) ◽  
pp. 123301
Author(s):  
Pierre Mergny ◽  
Satya N Majumdar

Abstract We study the probability of stability of a large complex system of size N within the framework of a generalized May model, which assumes a linear dynamics of each population size n i (with respect to its equilibrium value): d n i d t = − a i n i − T ∑ j J i j n j . The a i > 0’s are the intrinsic decay rates, J ij is a real symmetric (N × N) Gaussian random matrix and T measures the strength of pairwise interaction between different species. Our goal is to study how inhomogeneities in the intrinsic damping rates a i affect the stability of this dynamical system. As the interaction strength T increases, the system undergoes a phase transition from a stable phase to an unstable phase at a critical value T = T c. We reinterpret the probability of stability in terms of the hitting time of the level b = 0 of an associated Dyson Brownian motion (DBM), starting at the initial position a i and evolving in ‘time’ T. In the large N → ∞ limit, using this DBM picture, we are able to completely characterize T c for arbitrary density μ(a) of the a i ’s. For a specific flat configuration a i = 1 + σ i − 1 N , we obtain an explicit parametric solution for the limiting (as N → ∞) spectral density for arbitrary T and σ. For finite but large N, we also compute the large deviation properties of the probability of stability on the stable side T < T c using a Coulomb gas representation.


Author(s):  
Shinji Koshida ◽  
Kalle Kytölä

AbstractIn several examples it has been observed that a module category of a vertex operator algebra (VOA) is equivalent to a category of representations of some quantum group. The present article is concerned with developing such a duality in the case of the Virasoro VOA at generic central charge; arguably the most rudimentary of all VOAs, yet structurally complicated. We do not address the category of all modules of the generic Virasoro VOA, but we consider the infinitely many modules from the first row of the Kac table. Building on an explicit quantum group method of Coulomb gas integrals, we give a new proof of the fusion rules, we prove the analyticity of compositions of intertwining operators, and we show that the conformal blocks are fully determined by the quantum group method. Crucially, we prove the associativity of the intertwining operators among the first-row modules, and find that the associativity is governed by the 6j-symbols of the quantum group. Our results constitute a concrete duality between a VOA and a quantum group, and they will serve as the key tools to establish the equivalence of the first-row subcategory of modules of the generic Virasoro VOA and the category of (type-1) finite-dimensional representations of $${\mathcal {U}}_q (\mathfrak {sl}_2)$$ U q ( sl 2 ) .


Author(s):  
Yacin Ameur ◽  
Nam-Gyu Kang ◽  
Seong-Mi Seo

AbstractIn this article, we study microscopic properties of a two-dimensional Coulomb gas ensemble near a conical singularity arising from insertion of a point charge in the bulk of the droplet. In the determinantal case, we characterize all rotationally symmetric scaling limits (“Mittag-Leffler fields”) and obtain universality of them when the underlying potential is algebraic. Applications include a central limit theorem for $\log |p_{n}(\zeta )|$ log | p n ( ζ ) | where pn is the characteristic polynomial of an n:th order random normal matrix.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Nathan Haouzi ◽  
Can Kozçaz

Abstract Starting from type IIB string theory on an ADE singularity, the (2, 0) little string arises when one takes the string coupling gs to 0. In this setup, we give a unified description of the codimension-two defects of the little string, labeled by a simple Lie algebra $$ \mathfrak{g} $$ g . Geometrically, these are D5 branes wrapping 2-cycles of the singularity, subject to a certain folding operation when the algebra is non simply-laced. Equivalently, the defects are specified by a certain set of weights of $$ {}^L\mathfrak{g} $$ L g , the Langlands dual of $$ \mathfrak{g} $$ g . As a first application, we show that the instanton partition function of the $$ \mathfrak{g} $$ g -type quiver gauge theory on the defect is equal to a 3-point conformal block of the $$ \mathfrak{g} $$ g -type deformed Toda theory in the Coulomb gas formalism. As a second application, we argue that in the (2, 0) CFT limit, the Coulomb branch of the defects flows to a nilpotent orbit of $$ \mathfrak{g} $$ g .


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Hernán A. González ◽  
Francisco Rojas

Abstract The all-loop resummation of SU(N) gauge theory amplitudes is known to factorize into an IR-divergent (soft and collinear) factor and a finite (hard) piece. The divergent factor is universal, whereas the hard function is a process-dependent quantity.We prove that this factorization persists for the corresponding celestial amplitudes. Moreover, the soft/collinear factor becomes a scalar correlator of the product of renormalized Wilson lines defined in terms of celestial data. Their effect on the hard amplitude is a shift in the scaling dimensions by an infinite amount, proportional to the cusp anomalous dimension. This leads us to conclude that the celestial-IR-safe gluon amplitude corresponds to a expectation value of operators dressed with Wilson line primaries. These results hold for finite N.In the large N limit, we show that the soft/collinear correlator can be described in terms of vertex operators in a Coulomb gas of colored scalar primaries with nearest neighbor interactions. In the particular cases of four and five gluons in planar $$ \mathcal{N} $$ N = 4 SYM theory, where the hard factor is known to exponentiate, we establish that the Mellin transform converges in the UV thanks to the fact that the cusp anomalous dimension is a positive quantity. In other words, the very existence of the full celestial amplitude is owed to the positivity of the cusp anomalous dimension.


Sign in / Sign up

Export Citation Format

Share Document