scholarly journals The ABCDEFG of little strings

2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Nathan Haouzi ◽  
Can Kozçaz

Abstract Starting from type IIB string theory on an ADE singularity, the (2, 0) little string arises when one takes the string coupling gs to 0. In this setup, we give a unified description of the codimension-two defects of the little string, labeled by a simple Lie algebra $$ \mathfrak{g} $$ g . Geometrically, these are D5 branes wrapping 2-cycles of the singularity, subject to a certain folding operation when the algebra is non simply-laced. Equivalently, the defects are specified by a certain set of weights of $$ {}^L\mathfrak{g} $$ L g , the Langlands dual of $$ \mathfrak{g} $$ g . As a first application, we show that the instanton partition function of the $$ \mathfrak{g} $$ g -type quiver gauge theory on the defect is equal to a 3-point conformal block of the $$ \mathfrak{g} $$ g -type deformed Toda theory in the Coulomb gas formalism. As a second application, we argue that in the (2, 0) CFT limit, the Coulomb branch of the defects flows to a nilpotent orbit of $$ \mathfrak{g} $$ g .

2011 ◽  
Vol 26 (20) ◽  
pp. 3439-3467 ◽  
Author(s):  
H. ITOYAMA ◽  
N. YONEZAWA

We consider the half-genus expansion of the resolvent function in the β-deformed matrix model with three-Penner potential under the AGT conjecture and the 0d–4d dictionary. The partition function of the model, after the specification of the paths, becomes the DF conformal block for fixed c and provides the Nekrasov partition function expanded both in [Formula: see text] and in ϵ = ϵ1+ϵ2. Exploiting the explicit expressions for the lower terms of the free energy extracted from the above expansion, we derive the first few ϵ corrections to the Seiberg–Witten prepotential in terms of the parameters of SU(2), Nf = 4, [Formula: see text] supersymmetric gauge theory.


2019 ◽  
Vol 53 (4) ◽  
pp. 241-249
Author(s):  
E. A. Goncharov ◽  
M. V. Finkelberg

Author(s):  
Sergey A Cherkis ◽  
Jacques Hurtubise

Abstract The construction of Atiyah, Drinfeld, Hitchin and Manin provided complete description of all instantons on Euclidean four-space. It was extended by Kronheimer and Nakajima to instantons on ALE spaces, resolutions of orbifolds $\mathbb{R}^4/\Gamma$ by a finite subgroup Γ⊂SU(2). We consider a similar classification, in the holomorphic context, of instantons on some of the next spaces in the hierarchy, the ALF multi-Taub-NUT manifolds, showing how they tie in to the bow solutions to Nahm’s equations via the Nahm correspondence. Recently Nakajima and Takayama constructed the Coulomb branch of the moduli space of vacua of a quiver gauge theory, tying them to the same space of bow solutions. One can view our construction as describing the same manifold as the Higgs branch of the mirror gauge theory as described by Cherkis, O’Hara and Saemann. Our construction also yields the monad construction of holomorphic instanton bundles on the multi-Taub-NUT space for any classical compact Lie structure group.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Gabi Zafrir

Abstract We propose that a certain 4d$$ \mathcal{N} $$ N = 1 SU(2) × SU(2) gauge theory flows in the IR to an $$ \mathcal{N} $$ N = 3 SCFT plus a single free chiral field. The specific $$ \mathcal{N} $$ N = 3 SCFT has rank 1 and a dimension three Coulomb branch operator. The flow is generically expected to land at the $$ \mathcal{N} $$ N = 3 SCFT deformed by the marginal deformation associated with said Coulomb branch operator. We also present a discussion about the properties expected of various RG invariant quantities from $$ \mathcal{N} $$ N = 3 superconformal symmetry, and use these to test our proposal. Finally, we discuss a generalization to another $$ \mathcal{N} $$ N = 1 model that we propose is related to a certain rank 3 $$ \mathcal{N} $$ N = 3 SCFT through the turning of certain marginal deformations.


Author(s):  
Kazutoshi Ohta ◽  
Norisuke Sakai

Abstract We study the moduli space volume of BPS vortices in quiver gauge theories on compact Riemann surfaces. The existence of BPS vortices imposes constraints on the quiver gauge theories. We show that the moduli space volume is given by a vev of a suitable cohomological operator (volume operator) in a supersymmetric quiver gauge theory, where BPS equations of the vortices are embedded. In the supersymmetric gauge theory, the moduli space volume is exactly evaluated as a contour integral by using the localization. Graph theory is useful to construct the supersymmetric quiver gauge theory and to derive the volume formula. The contour integral formula of the volume (generalization of the Jeffrey-Kirwan residue formula) leads to the Bradlow bounds (upper bounds on the vorticity by the area of the Riemann surface divided by the intrinsic size of the vortex). We give some examples of various quiver gauge theories and discuss properties of the moduli space volume in these theories. Our formula are applied to the volume of the vortex moduli space in the gauged non-linear sigma model with CPN target space, which is obtained by a strong coupling limit of a parent quiver gauge theory. We also discuss a non-Abelian generalization of the quiver gauge theory and “Abelianization” of the volume formula.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Mario Martone

Abstract We derive explicit formulae to compute the a and c central charges of four dimensional $$ \mathcal{N} $$ N = 2 superconformal field theories (SCFTs) directly from Coulomb branch related quantities. The formulae apply at arbitrary rank. We also discover general properties of the low-energy limit behavior of the flavor symmetry of $$ \mathcal{N} $$ N = 2 SCFTs which culminate with our $$ \mathcal{N} $$ N = 2 UV-IR simple flavor condition. This is done by determining precisely the relation between the integrand of the partition function of the topologically twisted version of the 4d $$ \mathcal{N} $$ N = 2 SCFTs and the singular locus of their Coulomb branches. The techniques developed here are extensively applied to many rank-2 SCFTs, including new ones, in a companion paper.This manuscript is dedicated to the memory of Rayshard Brooks, George Floyd, Breonna Taylor and the countless black lives taken by US police forces and still awaiting justice. Our hearts are with our colleagues of color who suffer daily the consequences of this racist world.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Nathan Haouzi ◽  
Jihwan Oh

Abstract We propose a double quantization of four-dimensional $$ \mathcal{N} $$ N = 2 Seiberg-Witten geometry, for all classical gauge groups and a wide variety of matter content. This can be understood as a set of certain non-perturbative Schwinger-Dyson identities, following the program initiated by Nekrasov [1]. The construction relies on the computation of the instanton partition function of the gauge theory on the so-called Ω-background on ℝ4, in the presence of half-BPS codimension 4 defects. The two quantization parameters are identified as the two parameters of this background. The Seiberg-Witten curve of each theory is recovered in the flat space limit. Whenever possible, we motivate our construction from type IIA string theory.


2021 ◽  
Vol 8 (3) ◽  
Author(s):  
Georgios Korpas ◽  
Jan Manschot ◽  
Gregory W. Moore ◽  
Iurii Nidaiev

AbstractThe u-plane integral is the contribution of the Coulomb branch to correlation functions of $${\mathcal {N}}=2$$ N = 2 gauge theory on a compact four-manifold. We consider the u-plane integral for correlators of point and surface observables of topologically twisted theories with gauge group $$\mathrm{SU}(2)$$ SU ( 2 ) , for an arbitrary four-manifold with $$(b_1,b_2^+)=(0,1)$$ ( b 1 , b 2 + ) = ( 0 , 1 ) . The u-plane contribution equals the full correlator in the absence of Seiberg–Witten contributions at strong coupling, and coincides with the mathematically defined Donaldson invariants in such cases. We demonstrate that the u-plane correlators are efficiently determined using mock modular forms for point observables, and Appell–Lerch sums for surface observables. We use these results to discuss the asymptotic behavior of correlators as function of the number of observables. Our findings suggest that the vev of exponentiated point and surface observables is an entire function of the fugacities.


2006 ◽  
Vol 2006 (10) ◽  
pp. 026-026 ◽  
Author(s):  
Jaemo Park ◽  
Woojoo Sim

2006 ◽  
Vol 10 (2) ◽  
pp. 159-179 ◽  
Author(s):  
Nick Halmagyi ◽  
Christian Römelsberger ◽  
Nicholas P. Warner

Sign in / Sign up

Export Citation Format

Share Document