scholarly journals On a Chebyshev-Type Inequality for Sums of Independent Random Variables

1966 ◽  
Vol 37 (1) ◽  
pp. 248-259 ◽  
Author(s):  
S. M. Samuels
Mathematics ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 577 ◽  
Author(s):  
Irina Shevtsova ◽  
Mikhail Tselishchev

We introduce a generalized stationary renewal distribution (also called the equilibrium transform) for arbitrary distributions with finite nonzero first moment and study its properties. In particular, we prove an optimal moment-type inequality for the Kantorovich distance between a distribution and its equilibrium transform. Using the introduced transform and Stein’s method, we investigate the rate of convergence in the Rényi theorem for the distributions of geometric sums of independent random variables with identical nonzero means and finite second moments without any constraints on their supports. We derive an upper bound for the Kantorovich distance between the normalized geometric random sum and the exponential distribution which has exact order of smallness as the expectation of the geometric number of summands tends to infinity. Moreover, we introduce the so-called asymptotically best constant and present its lower bound yielding the one for the Kantorovich distance under consideration. As a concluding remark, we provide an extension of the obtained estimates of the accuracy of the exponential approximation to non-geometric random sums of independent random variables with non-identical nonzero means.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Aiting Shen

We present the Bernstein-type inequality for widely dependent random variables. By using the Bernstein-type inequality and the truncated method, we further study the strong consistency of estimator of fixed design regression model under widely dependent random variables, which generalizes the corresponding one of independent random variables. As an application, the strong consistency for the nearest neighbor estimator is obtained.


2020 ◽  
pp. 9-13
Author(s):  
A. V. Lapko ◽  
V. A. Lapko

An original technique has been justified for the fast bandwidths selection of kernel functions in a nonparametric estimate of the multidimensional probability density of the Rosenblatt–Parzen type. The proposed method makes it possible to significantly increase the computational efficiency of the optimization procedure for kernel probability density estimates in the conditions of large-volume statistical data in comparison with traditional approaches. The basis of the proposed approach is the analysis of the optimal parameter formula for the bandwidths of a multidimensional kernel probability density estimate. Dependencies between the nonlinear functional on the probability density and its derivatives up to the second order inclusive of the antikurtosis coefficients of random variables are found. The bandwidths for each random variable are represented as the product of an undefined parameter and their mean square deviation. The influence of the error in restoring the established functional dependencies on the approximation properties of the kernel probability density estimation is determined. The obtained results are implemented as a method of synthesis and analysis of a fast bandwidths selection of the kernel estimation of the two-dimensional probability density of independent random variables. This method uses data on the quantitative characteristics of a family of lognormal distribution laws.


2014 ◽  
Vol 59 (2) ◽  
pp. 553-562 ◽  
Author(s):  
Agnieszka Surowiak ◽  
Marian Brożek

Abstract Settling velocity of particles, which is the main parameter of jig separation, is affected by physical (density) and the geometrical properties (size and shape) of particles. The authors worked out a calculation algorithm of particles settling velocity distribution for irregular particles assuming that the density of particles, their size and shape constitute independent random variables of fixed distributions. Applying theorems of probability, concerning distributions function of random variables, the authors present general formula of probability density function of settling velocity irregular particles for the turbulent motion. The distributions of settling velocity of irregular particles were calculated utilizing industrial sample. The measurements were executed and the histograms of distributions of volume and dynamic shape coefficient, were drawn. The separation accuracy was measured by the change of process imperfection of irregular particles in relation to spherical ones, resulting from the distribution of particles settling velocity.


Sign in / Sign up

Export Citation Format

Share Document