scholarly journals The Rate of Convergence of a Random Walk to Brownian Motion

1973 ◽  
Vol 1 (4) ◽  
pp. 699-701 ◽  
Author(s):  
David F. Fraser
2021 ◽  
Vol 58 (1) ◽  
pp. 22-41
Author(s):  
Fabian A. Harang ◽  
Marc Lagunas-Merino ◽  
Salvador Ortiz-Latorre

AbstractWe propose a new multifractional stochastic process which allows for self-exciting behavior, similar to what can be seen for example in earthquakes and other self-organizing phenomena. The process can be seen as an extension of a multifractional Brownian motion, where the Hurst function is dependent on the past of the process. We define this by means of a stochastic Volterra equation, and we prove existence and uniqueness of this equation, as well as giving bounds on the p-order moments, for all $p\geq1$. We show convergence of an Euler–Maruyama scheme for the process, and also give the rate of convergence, which is dependent on the self-exciting dynamics of the process. Moreover, we discuss various applications of this process, and give examples of different functions to model self-exciting behavior.


1987 ◽  
Vol 74 (2) ◽  
pp. 271-287 ◽  
Author(s):  
J. R. Norris ◽  
L. C. G. Rogers ◽  
David Williams

2001 ◽  
Vol 186 (2) ◽  
pp. 239-270 ◽  
Author(s):  
Amir Dembo ◽  
Yuval Peres ◽  
Jay Rosen ◽  
Ofer Zeitouni

1976 ◽  
Vol 13 (04) ◽  
pp. 733-740
Author(s):  
N. Veraverbeke ◽  
J. L. Teugels

Let Gn (x) be the distribution of the nth successive maximum of a random walk on the real line. Under conditions typical for complete exponential convergence, the decay of Gn (x) – limn→∞ Gn (x) is asymptotically equal to H(x) γn n–3/2 as n → ∞where γ < 1 and H(x) a function solely depending on x. For the case of drift to + ∞, G ∞(x) = 0 and the result is new; for drift to – ∞we give a new proof, simplifying and correcting an earlier version in [9].


1976 ◽  
Vol 13 (4) ◽  
pp. 733-740 ◽  
Author(s):  
N. Veraverbeke ◽  
J. L. Teugels

Let Gn (x) be the distribution of the nth successive maximum of a random walk on the real line. Under conditions typical for complete exponential convergence, the decay of Gn (x) – limn→∞ Gn(x) is asymptotically equal to H(x) γn n–3/2 as n → ∞where γ < 1 and H(x) a function solely depending on x. For the case of drift to + ∞, G∞(x) = 0 and the result is new; for drift to – ∞we give a new proof, simplifying and correcting an earlier version in [9].


2013 ◽  
Vol 23 (6) ◽  
pp. 1257-1265 ◽  
Author(s):  
GEORGE DAVIE ◽  
WILLEM L. FOUCHÉ

We examine a construction due to Fouché in which a Brownian motion is constructed from an algorithmically random infinite binary sequence. We show that although the construction is provably not computable in the sense of computable analysis, a lower bound for the rate of convergence is computable in any upper bound for the compressibilty of the sequence, making the construction layerwise computable.


Sign in / Sign up

Export Citation Format

Share Document