scholarly journals Distribution of components in the $k$-nearest neighbour random geometric graph for $k$ below the connectivity threshold

2013 ◽  
Vol 18 (0) ◽  
Author(s):  
Victor Falgas-Ravry
2005 ◽  
Vol 37 (01) ◽  
pp. 1-24 ◽  
Author(s):  
Paul Balister ◽  
Béla Bollobás ◽  
Amites Sarkar ◽  
Mark Walters

Let 𝓅 be a Poisson process of intensity one in a square S n of area n. We construct a random geometric graph G n,k by joining each point of 𝓅 to its k ≡ k(n) nearest neighbours. Recently, Xue and Kumar proved that if k ≤ 0.074 log n then the probability that G n, k is connected tends to 0 as n → ∞ while, if k ≥ 5.1774 log n, then the probability that G n, k is connected tends to 1 as n → ∞. They conjectured that the threshold for connectivity is k = (1 + o(1)) log n. In this paper we improve these lower and upper bounds to 0.3043 log n and 0.5139 log n, respectively, disproving this conjecture. We also establish lower and upper bounds of 0.7209 log n and 0.9967 log n for the directed version of this problem. A related question concerns coverage. With G n, k as above, we surround each vertex by the smallest (closed) disc containing its k nearest neighbours. We prove that if k ≤ 0.7209 log n then the probability that these discs cover S n tends to 0 as n → ∞ while, if k ≥ 0.9967 log n, then the probability that the discs cover S n tends to 1 as n → ∞.


2009 ◽  
Vol 41 (01) ◽  
pp. 1-12 ◽  
Author(s):  
Paul Balister ◽  
Béla Bollobás ◽  
Amites Sarkar ◽  
Mark Walters

Let 𝒫 be a Poisson process of intensity 1 in a square S n of area n. For a fixed integer k, join every point of 𝒫 to its k nearest neighbours, creating an undirected random geometric graph G n,k . We prove that there exists a critical constant c crit such that, for c < c crit, G n,⌊c log n⌋ is disconnected with probability tending to 1 as n → ∞ and, for c > c crit, G n,⌊c log n⌋ is connected with probability tending to 1 as n → ∞. This answers a question posed in Balister et al. (2005).


2009 ◽  
Vol 41 (1) ◽  
pp. 1-12 ◽  
Author(s):  
Paul Balister ◽  
Béla Bollobás ◽  
Amites Sarkar ◽  
Mark Walters

Let 𝒫 be a Poisson process of intensity 1 in a square Sn of area n. For a fixed integer k, join every point of 𝒫 to its k nearest neighbours, creating an undirected random geometric graph Gn,k. We prove that there exists a critical constant ccrit such that, for c < ccrit, Gn,⌊c log n⌋ is disconnected with probability tending to 1 as n → ∞ and, for c > ccrit, Gn,⌊c log n⌋ is connected with probability tending to 1 as n → ∞. This answers a question posed in Balister et al. (2005).


2005 ◽  
Vol 37 (1) ◽  
pp. 1-24 ◽  
Author(s):  
Paul Balister ◽  
Béla Bollobás ◽  
Amites Sarkar ◽  
Mark Walters

Let 𝓅 be a Poisson process of intensity one in a square Sn of area n. We construct a random geometric graph Gn,k by joining each point of 𝓅 to its k ≡ k(n) nearest neighbours. Recently, Xue and Kumar proved that if k ≤ 0.074 log n then the probability that Gn, k is connected tends to 0 as n → ∞ while, if k ≥ 5.1774 log n, then the probability that Gn, k is connected tends to 1 as n → ∞. They conjectured that the threshold for connectivity is k = (1 + o(1)) log n. In this paper we improve these lower and upper bounds to 0.3043 log n and 0.5139 log n, respectively, disproving this conjecture. We also establish lower and upper bounds of 0.7209 log n and 0.9967 log n for the directed version of this problem. A related question concerns coverage. With Gn, k as above, we surround each vertex by the smallest (closed) disc containing its k nearest neighbours. We prove that if k ≤ 0.7209 log n then the probability that these discs cover Sn tends to 0 as n → ∞ while, if k ≥ 0.9967 log n, then the probability that the discs cover Sn tends to 1 as n → ∞.


2016 ◽  
Vol 48 (3) ◽  
pp. 848-864 ◽  
Author(s):  
J. Díaz ◽  
D. Mitsche ◽  
G. Perarnau ◽  
X. Pérez-Giménez

Abstract Given any two vertices u, v of a random geometric graph G(n, r), denote by dE(u, v) their Euclidean distance and by dE(u, v) their graph distance. The problem of finding upper bounds on dG(u, v) conditional on dE(u, v) that hold asymptotically almost surely has received quite a bit of attention in the literature. In this paper we improve the known upper bounds for values of r=ω(√logn) (that is, for r above the connectivity threshold). Our result also improves the best known estimates on the diameter of random geometric graphs. We also provide a lower bound on dE(u, v) conditional on dE(u, v).


2017 ◽  
Vol 49 (4) ◽  
pp. 1067-1090 ◽  
Author(s):  
Nicolás García Trillos ◽  
Dejan Slepčev ◽  
James von Brecht

Abstract We investigate the estimation of the perimeter of a set by a graph cut of a random geometric graph. For Ω ⊆ D = (0, 1)d with d ≥ 2, we are given n random independent and identically distributed points on D whose membership in Ω is known. We consider the sample as a random geometric graph with connection distance ε > 0. We estimate the perimeter of Ω (relative to D) by the, appropriately rescaled, graph cut between the vertices in Ω and the vertices in D ∖ Ω. We obtain bias and variance estimates on the error, which are optimal in scaling with respect to n and ε. We consider two scaling regimes: the dense (when the average degree of the vertices goes to ∞) and the sparse one (when the degree goes to 0). In the dense regime, there is a crossover in the nature of the approximation at dimension d = 5: we show that in low dimensions d = 2, 3, 4 one can obtain confidence intervals for the approximation error, while in higher dimensions one can obtain only error estimates for testing the hypothesis that the perimeter is less than a given number.


10.37236/7159 ◽  
2018 ◽  
Vol 25 (4) ◽  
Author(s):  
Colin McDiarmid ◽  
Dieter Mitsche ◽  
Pawel Prałat

A clique colouring of a graph is a colouring of the vertices such that no maximal clique is monochromatic (ignoring isolated vertices). The least number of colours in such a colouring is the clique chromatic number.  Given $n$ points $\mathbf{x}_1, \ldots,\mathbf{x}_n$ in the plane, and a threshold $r>0$, the corresponding geometric graph has vertex set $\{v_1,\ldots,v_n\}$, and distinct $v_i$ and $v_j$ are adjacent when the Euclidean distance between $\mathbf{x}_i$ and $\mathbf{x}_j$ is at most $r$. We investigate the clique chromatic number of such graphs.We first show that the clique chromatic number is at most 9 for any geometric graph in the plane, and briefly consider geometric graphs in higher dimensions. Then we study the asymptotic behaviour of the clique chromatic number for the random geometric graph $\mathcal{G}$ in the plane, where $n$ random points are independently and uniformly distributed in a suitable square. We see that as $r$ increases from 0, with high probability the clique chromatic number is 1 for very small $r$, then 2 for small $r$, then at least 3 for larger $r$, and finally drops back to 2.


2021 ◽  
Author(s):  
Jan Schulz ◽  
Daniel Mayerhoffer ◽  
Anna Gebhard

Across income groups and countries, the public perception of economic inequality and many other macroeconomic variables such as inflation or unemployment rates is spectacularly wrong. These misperceptions have far-reaching consequences, as it is perceived inequality, not actual inequality informing redistributive preferences. The prevalence of this phenomenon is independent of social class and welfare regime, which suggests the existence of a common mechanism behind public perceptions. We propose a network-based explanation of perceived inequality building on recent advances in random geometric graph theory. The literature has identified several stylised facts on how individual perceptions respond to actual inequality and how these biases vary systematically along the income distribution. Our generating mechanism can replicate all of them simultaneously. It also produces social networks that exhibit salient features of real-world networks; namely, they cannot be statistically distinguished from small-world networks, testifying to the robustness of our approach. Our results, therefore, suggest that homophilic segregation is a promising candidate to explain inequality perceptions with strong implications for theories of consumption behaviour.


2019 ◽  
Vol 7 (5) ◽  
pp. 792-816
Author(s):  
Jesse Michel ◽  
Sushruth Reddy ◽  
Rikhav Shah ◽  
Sandeep Silwal ◽  
Ramis Movassagh

Abstract Many real-world networks are intrinsically directed. Such networks include activation of genes, hyperlinks on the internet and the network of followers on Twitter among many others. The challenge, however, is to create a network model that has many of the properties of real-world networks such as power-law degree distributions and the small-world property. To meet these challenges, we introduce the Directed Random Geometric Graph (DRGG) model, which is an extension of the random geometric graph model. We prove that it is scale-free with respect to the indegree distribution, has binomial outdegree distribution, has a high clustering coefficient, has few edges and is likely small-world. These are some of the main features of aforementioned real-world networks. We also empirically observed that word association networks have many of the theoretical properties of the DRGG model.


Sign in / Sign up

Export Citation Format

Share Document