scholarly journals Directed random geometric graphs

2019 ◽  
Vol 7 (5) ◽  
pp. 792-816
Author(s):  
Jesse Michel ◽  
Sushruth Reddy ◽  
Rikhav Shah ◽  
Sandeep Silwal ◽  
Ramis Movassagh

Abstract Many real-world networks are intrinsically directed. Such networks include activation of genes, hyperlinks on the internet and the network of followers on Twitter among many others. The challenge, however, is to create a network model that has many of the properties of real-world networks such as power-law degree distributions and the small-world property. To meet these challenges, we introduce the Directed Random Geometric Graph (DRGG) model, which is an extension of the random geometric graph model. We prove that it is scale-free with respect to the indegree distribution, has binomial outdegree distribution, has a high clustering coefficient, has few edges and is likely small-world. These are some of the main features of aforementioned real-world networks. We also empirically observed that word association networks have many of the theoretical properties of the DRGG model.

2004 ◽  
Vol 18 (23) ◽  
pp. 1157-1164 ◽  
Author(s):  
HYUN-JOO KIM ◽  
YEON-MU CHOI ◽  
JIN MIN KIM

We introduce an evolving complex network model, where a new vertex is added and new edges between already existing vertices are added with a control parameter p. The model shows the characteristics of real networks such as small-world property, high degree of clustering, scale-free behavior in degree distribution, and hierarchical topology. We obtain the various values of degree exponent γ in the range 2<γ≤3 by adjusting the parameter p and find that the degree exponent decreases logarithmically with p. In addition, the clustering coefficient is tunable by changing the control parameter p, and the average path length L is proportional to ln ( ln N) with nonzero p, where N is the network size.


Fractals ◽  
2019 ◽  
Vol 27 (02) ◽  
pp. 1950010
Author(s):  
DAOHUA WANG ◽  
YUMEI XUE ◽  
QIAN ZHANG ◽  
MIN NIU

Many real systems behave similarly with scale-free and small-world structures. In this paper, we generate a special hierarchical network and based on the particular construction of the graph, we aim to present a study on some properties, such as the clustering coefficient, average path length and degree distribution of it, which shows the scale-free and small-world effects of this network.


IEEE Access ◽  
2018 ◽  
Vol 6 ◽  
pp. 59833-59842 ◽  
Author(s):  
Wenchao Jiang ◽  
Yinhu Zhai ◽  
Zhigang Zhuang ◽  
Paul Martin ◽  
Zhiming Zhao ◽  
...  

2021 ◽  
Author(s):  
Jan Schulz ◽  
Daniel Mayerhoffer ◽  
Anna Gebhard

Across income groups and countries, the public perception of economic inequality and many other macroeconomic variables such as inflation or unemployment rates is spectacularly wrong. These misperceptions have far-reaching consequences, as it is perceived inequality, not actual inequality informing redistributive preferences. The prevalence of this phenomenon is independent of social class and welfare regime, which suggests the existence of a common mechanism behind public perceptions. We propose a network-based explanation of perceived inequality building on recent advances in random geometric graph theory. The literature has identified several stylised facts on how individual perceptions respond to actual inequality and how these biases vary systematically along the income distribution. Our generating mechanism can replicate all of them simultaneously. It also produces social networks that exhibit salient features of real-world networks; namely, they cannot be statistically distinguished from small-world networks, testifying to the robustness of our approach. Our results, therefore, suggest that homophilic segregation is a promising candidate to explain inequality perceptions with strong implications for theories of consumption behaviour.


2021 ◽  
Author(s):  
Yuhu Qiu ◽  
Tianyang Lyu ◽  
Xizhe Zhang ◽  
Ruozhou Wang

Network decrease caused by the removal of nodes is an important evolution process that is paralleled with network growth. However, many complex network models usually lacked a sound decrease mechanism. Thus, they failed to capture how to cope with decreases in real life. The paper proposed decrease mechanisms for three typical types of networks, including the ER networks, the WS small-world networks and the BA scale-free networks. The proposed mechanisms maintained their key features in continuous and independent decrease processes, such as the random connections of ER networks, the long-range connections based on nearest-coupled network of WS networks and the tendency connections and the scale-free feature of BA networks. Experimental results showed that these mechanisms also maintained other topology characteristics including the degree distribution, clustering coefficient, average length of shortest-paths and diameter during decreases. Our studies also showed that it was quite difficult to find an efficient decrease mechanism for BA networks to withstand the continuous attacks at the high-degree nodes, because of the unequal status of nodes.


2015 ◽  
Vol 26 (09) ◽  
pp. 1550104 ◽  
Author(s):  
Bai-Bai Fu ◽  
Lin Zhang ◽  
Shu-Bin Li ◽  
Yun-Xuan Li

In this work, we have collected 195 bus routes and 1433 bus stations of Jinan city as sample date to build up the public transit geospatial network model by applying space L method, until May 2014. Then, by analyzing the topological properties of public transit geospatial network model, which include degree and degree distribution, average shortest path length, clustering coefficient and betweenness, we get the conclusion that public transit network is a typical complex network with scale-free and small-world characteristics. Furthermore, in order to analyze the survivability of public transit network, we define new network structure entropy based on betweenness importance, and prove its correctness by giving that the new network structure entropy has the same statistical characteristics with network efficiency. Finally, the "inflexion zone" is discovered, which can be taken as the momentous indicator to determine the public transit network failure.


2017 ◽  
Vol 49 (1) ◽  
pp. 49-60 ◽  
Author(s):  
Anshui Li ◽  
Tobias Müller

Abstract In this paper we study the treewidth of the random geometric graph, obtained by dropping n points onto the square [0,√n]2 and connecting pairs of points by an edge if their distance is at most r=r(n). We prove a conjecture of Mitsche and Perarnau (2014) stating that, with probability going to 1 as n→∞, the treewidth of the random geometric graph is 𝜣(r√n) when lim inf r>rc, where rc is the critical radius for the appearance of the giant component. The proof makes use of a comparison to standard bond percolation and with a little bit of extra work we are also able to show that, with probability tending to 1 as k→∞, the treewidth of the graph we obtain by retaining each edge of the k×k grid with probability p is 𝜣(k) if p>½ and 𝜣(√log k) if p<½.


2015 ◽  
Vol 19 (7) ◽  
pp. 3301-3318 ◽  
Author(s):  
M. J. Halverson ◽  
S. W. Fleming

Abstract. Network theory is applied to an array of streamflow gauges located in the Coast Mountains of British Columbia (BC) and Yukon, Canada. The goal of the analysis is to assess whether insights from this branch of mathematical graph theory can be meaningfully applied to hydrometric data, and, more specifically, whether it may help guide decisions concerning stream gauge placement so that the full complexity of the regional hydrology is efficiently captured. The streamflow data, when represented as a complex network, have a global clustering coefficient and average shortest path length consistent with small-world networks, which are a class of stable and efficient networks common in nature, but the observed degree distribution did not clearly indicate a scale-free network. Stability helps ensure that the network is robust to the loss of nodes; in the context of a streamflow network, stability is interpreted as insensitivity to station removal at random. Community structure is also evident in the streamflow network. A network theoretic community detection algorithm identified separate communities, each of which appears to be defined by the combination of its median seasonal flow regime (pluvial, nival, hybrid, or glacial, which in this region in turn mainly reflects basin elevation) and geographic proximity to other communities (reflecting shared or different daily meteorological forcing). Furthermore, betweenness analyses suggest a handful of key stations which serve as bridges between communities and might be highly valued. We propose that an idealized sampling network should sample high-betweenness stations, small-membership communities which are by definition rare or undersampled relative to other communities, and index stations having large numbers of intracommunity links, while retaining some degree of redundancy to maintain network robustness.


2014 ◽  
Vol 962-965 ◽  
pp. 2898-2902 ◽  
Author(s):  
Yue Qing Ren ◽  
Zhi Qiang Zhang

Focus on the weakness of modeling WSN topology by the means of random graph theory, a new weighted topology model of WSN based on random geometric theory is proposed in this paper. For the proposed new network model, the weighting scheme of network edge take into account the property of distance decreasing effect for communication signal. It also defines the differential weight which can embody the energy consumption for network communication. Based on simulations and calculations of the measures for the network topology as well as comparison with other forms of network, the results indicate that the proposed network topology model can not only describe the interrelated connected relationship between different nodes but also verify the degree of node is subject to Poisson distribution. It also has prominent clustering effects. These properties are consist with real world networks.


2014 ◽  
Vol 11 (12) ◽  
pp. 13663-13710 ◽  
Author(s):  
M. Halverson ◽  
S. Fleming

Abstract. Network theory is applied to an array of streamflow gauges located in the Coast Mountains of British Columbia and Yukon, Canada. The goal of the analysis is to assess whether insights from this branch of mathematical graph theory can be meaningfully applied to hydrometric data, and more specifically, whether it may help guide decisions concerning stream gauge placement so that the full complexity of the regional hydrology is efficiently captured. The streamflow data, when represented as a complex network, has a global clustering coefficient and average shortest path length consistent with small-world networks, which are a class of stable and efficient networks common in nature, but the results did not clearly suggest a scale-free network. Stability helps ensure that the network is robust to the loss of nodes; in the context of a streamflow network, stability is interpreted as insensitivity to station removal at random. Community structure is also evident in the streamflow network. A community detection algorithm identified 10 separate communities, each of which appears to be defined by the combination of its median seasonal flow regime (pluvial, nival, hybrid, or glacial, which in this region in turn mainly reflects basin elevation) and geographic proximity to other communities (reflecting shared or different daily meteorological forcing). Betweenness analyses additionally suggest a handful of key stations which serve as bridges between communities and might therefore be highly valued. We propose that an idealized sampling network should sample high-betweenness stations, as well as small-membership communities which are by definition rare or undersampled relative to other communities, while retaining some degree of redundancy to maintain network robustness.


Sign in / Sign up

Export Citation Format

Share Document