scholarly journals Minimal quasi-stationary distribution approximation for a birth and death process

2015 ◽  
Vol 20 (0) ◽  
Author(s):  
Denis Villemonais
1987 ◽  
Vol 24 (04) ◽  
pp. 965-977 ◽  
Author(s):  
Ilze Ziedins

We discuss the quasi-stationary distribution obtained when a simple birth and death process is conditioned on never exceeding K. An application of this model to one-dimensional circuit-switched communication networks is described, and some special cases examined.


1978 ◽  
Vol 10 (03) ◽  
pp. 570-586 ◽  
Author(s):  
James A. Cavender

Letqn(t) be the conditioned probability of finding a birth-and-death process in statenat timet,given that absorption into state 0 has not occurred by then. A family {q1(t),q2(t), · · ·} that is constant in time is a quasi-stationary distribution. If any exist, the quasi-stationary distributions comprise a one-parameter family related to quasi-stationary distributions of finite state-space approximations to the process.


1987 ◽  
Vol 24 (4) ◽  
pp. 965-977 ◽  
Author(s):  
Ilze Ziedins

We discuss the quasi-stationary distribution obtained when a simple birth and death process is conditioned on never exceeding K. An application of this model to one-dimensional circuit-switched communication networks is described, and some special cases examined.


1978 ◽  
Vol 10 (3) ◽  
pp. 570-586 ◽  
Author(s):  
James A. Cavender

Let qn(t) be the conditioned probability of finding a birth-and-death process in state n at time t, given that absorption into state 0 has not occurred by then. A family {q1(t), q2(t), · · ·} that is constant in time is a quasi-stationary distribution. If any exist, the quasi-stationary distributions comprise a one-parameter family related to quasi-stationary distributions of finite state-space approximations to the process.


Mathematics ◽  
2019 ◽  
Vol 7 (9) ◽  
pp. 798 ◽  
Author(s):  
Naumov ◽  
Gaidamaka ◽  
Samouylov

In this paper, we study queueing systems with an infinite and finite number of waiting places that can be modeled by a Quasi-Birth-and-Death process. We derive the conditions under which the stationary distribution for a loss system is a truncation of the stationary distribution of the Quasi-Birth-and-Death process and obtain the stationary distributions of both processes. We apply the obtained results to the analysis of a semi-open network in which a customer from an external queue replaces a customer leaving the system at the node from which the latter departed.


1992 ◽  
Vol 29 (4) ◽  
pp. 781-791 ◽  
Author(s):  
Masaaki Kijima

Let N(t) be an exponentially ergodic birth-death process on the state space {0, 1, 2, ···} governed by the parameters {λn, μn}, where µ0 = 0, such that λn = λ and μn = μ for all n ≧ N, N ≧ 1, with λ < μ. In this paper, we develop an algorithm to determine the decay parameter of such a specialized exponentially ergodic birth-death process, based on van Doorn's representation (1987) of eigenvalues of sign-symmetric tridiagonal matrices. The decay parameter is important since it is indicative of the speed of convergence to ergodicity. Some comparability results for the decay parameters are given, followed by the discussion for the decay parameter of a birth-death process governed by the parameters such that limn→∞λn = λ and limn→∞µn = μ. The algorithm is also shown to be a useful tool to determine the quasi-stationary distribution, i.e. the limiting distribution conditioned to stay in {1, 2, ···}, of such specialized birth-death processes.


1992 ◽  
Vol 29 (04) ◽  
pp. 781-791 ◽  
Author(s):  
Masaaki Kijima

Let N(t) be an exponentially ergodic birth-death process on the state space {0, 1, 2, ···} governed by the parameters {λn, μn }, where µ 0 = 0, such that λn = λ and μn = μ for all n ≧ N, N ≧ 1, with λ &lt; μ. In this paper, we develop an algorithm to determine the decay parameter of such a specialized exponentially ergodic birth-death process, based on van Doorn's representation (1987) of eigenvalues of sign-symmetric tridiagonal matrices. The decay parameter is important since it is indicative of the speed of convergence to ergodicity. Some comparability results for the decay parameters are given, followed by the discussion for the decay parameter of a birth-death process governed by the parameters such that lim n→∞ λn = λ and lim n→∞ µn = μ. The algorithm is also shown to be a useful tool to determine the quasi-stationary distribution, i.e. the limiting distribution conditioned to stay in {1, 2, ···}, of such specialized birth-death processes.


2006 ◽  
Vol 2006 ◽  
pp. 1-15 ◽  
Author(s):  
Pauline Coolen-Schrijner ◽  
Erik A. van Doorn

The Karlin-McGregor representation for the transition probabilities of a birth-death process with an absorbing bottom state involves a sequence of orthogonal polynomials and the corresponding measure. This representation can be generalized to a setting in which a transition to the absorbing state (killing) is possible from any state rather than just one state. The purpose of this paper is to investigate to what extent properties of birth-death processes, in particular with regard to the existence of quasi-stationary distributions, remain valid in the generalized setting. It turns out that the elegant structure of the theory of quasi-stationarity for birth-death processes remains largely intact as long as killing is possible from only finitely many states. In particular, the existence of a quasi-stationary distribution is ensured in this case if absorption is certain and the state probabilities tend to zero exponentially fast.


Sign in / Sign up

Export Citation Format

Share Document