Asymptotics for the stationary distribution in a discrete-time two-dimensional quasi-birth-and-death process

2012 ◽  
Vol 74 (2-3) ◽  
pp. 109-149 ◽  
Author(s):  
Toshihisa Ozawa
1981 ◽  
Vol 18 (01) ◽  
pp. 19-30 ◽  
Author(s):  
Robert Cogburn ◽  
William C. Torrez

A generalization to continuous time is given for a discrete-time model of a birth and death process in a random environment. Some important properties of this process in the continuous-time setting are stated and proved including instability and extinction conditions, and when suitable absorbing barriers have been defined, methods are given for the calculation of extinction probabilities and the expected duration of the process.


Mathematics ◽  
2019 ◽  
Vol 7 (9) ◽  
pp. 798 ◽  
Author(s):  
Naumov ◽  
Gaidamaka ◽  
Samouylov

In this paper, we study queueing systems with an infinite and finite number of waiting places that can be modeled by a Quasi-Birth-and-Death process. We derive the conditions under which the stationary distribution for a loss system is a truncation of the stationary distribution of the Quasi-Birth-and-Death process and obtain the stationary distributions of both processes. We apply the obtained results to the analysis of a semi-open network in which a customer from an external queue replaces a customer leaving the system at the node from which the latter departed.


1987 ◽  
Vol 24 (04) ◽  
pp. 965-977 ◽  
Author(s):  
Ilze Ziedins

We discuss the quasi-stationary distribution obtained when a simple birth and death process is conditioned on never exceeding K. An application of this model to one-dimensional circuit-switched communication networks is described, and some special cases examined.


1978 ◽  
Vol 10 (03) ◽  
pp. 570-586 ◽  
Author(s):  
James A. Cavender

Letqn(t) be the conditioned probability of finding a birth-and-death process in statenat timet,given that absorption into state 0 has not occurred by then. A family {q1(t),q2(t), · · ·} that is constant in time is a quasi-stationary distribution. If any exist, the quasi-stationary distributions comprise a one-parameter family related to quasi-stationary distributions of finite state-space approximations to the process.


1987 ◽  
Vol 24 (4) ◽  
pp. 965-977 ◽  
Author(s):  
Ilze Ziedins

We discuss the quasi-stationary distribution obtained when a simple birth and death process is conditioned on never exceeding K. An application of this model to one-dimensional circuit-switched communication networks is described, and some special cases examined.


2000 ◽  
Vol 37 (4) ◽  
pp. 984-998 ◽  
Author(s):  
Guy Latouche ◽  
P. G. Taylor

GI/M/1-type Markov chains make up a class of two-dimensional Markov chains. One dimension is usually called the level, and the other is often called the phase. Transitions from states in level k are restricted to states in levels less than or equal to k+1. For given transition probabilities in the interior of the state space, we show that it is always possible to define the boundary transition probabilities in such a way that the level and phase are independent under the stationary distribution. We motivate our analysis by first considering the quasi-birth-and-death process special case in which transitions from any state are restricted to states in the same, or adjacent, levels.


1981 ◽  
Vol 18 (1) ◽  
pp. 19-30 ◽  
Author(s):  
Robert Cogburn ◽  
William C. Torrez

A generalization to continuous time is given for a discrete-time model of a birth and death process in a random environment. Some important properties of this process in the continuous-time setting are stated and proved including instability and extinction conditions, and when suitable absorbing barriers have been defined, methods are given for the calculation of extinction probabilities and the expected duration of the process.


1978 ◽  
Vol 10 (3) ◽  
pp. 570-586 ◽  
Author(s):  
James A. Cavender

Let qn(t) be the conditioned probability of finding a birth-and-death process in state n at time t, given that absorption into state 0 has not occurred by then. A family {q1(t), q2(t), · · ·} that is constant in time is a quasi-stationary distribution. If any exist, the quasi-stationary distributions comprise a one-parameter family related to quasi-stationary distributions of finite state-space approximations to the process.


Sign in / Sign up

Export Citation Format

Share Document