scholarly journals On far-outlying constant mean curvature spheres in asymptotically flat Riemannian 3-manifolds

2020 ◽  
Vol 2020 (767) ◽  
pp. 161-191
Author(s):  
Otis Chodosh ◽  
Michael Eichmair

AbstractWe extend the Lyapunov–Schmidt analysis of outlying stable constant mean curvature spheres in the work of S. Brendle and the second-named author [S. Brendle and M. Eichmair, Isoperimetric and Weingarten surfaces in the Schwarzschild manifold, J. Differential Geom. 94 2013, 3, 387–407] to the “far-off-center” regime and to include general Schwarzschild asymptotics. We obtain sharp existence and non-existence results for large stable constant mean curvature spheres that depend delicately on the behavior of scalar curvature at infinity.

2014 ◽  
Vol 25 (14) ◽  
pp. 1450121 ◽  
Author(s):  
Haizhong Li ◽  
Yong Wei ◽  
Changwei Xiong

In this paper, we consider the closed embedded hypersurface Σ in the warped product manifold [Formula: see text] equipped with the metric g = dr2 + λ(r)2 gN. We give some characterizations of slice {r} × N by the condition that Σ has constant weighted higher-order mean curvatures (λ′)αpk, or constant weighted higher-order mean curvature ratio (λ′)αpk/p1, which generalize Brendle's [Constant mean curvature surfaces in warped product manifolds, Publ. Math. Inst. Hautes Études Sci. 117 (2013) 247–269] and Brendle–Eichmair's [Isoperimetric and Weingarten surfaces in the Schwarzschild manifold, J. Differential Geom. 94(3) (2013) 387–407] results. In particular, we show that the assumption convex of Brendle–Eichmair's result [Isoperimetric and Weingarten surfaces in the Schwarzschild manifold, J. Differential Geom. 94(3) (2013) 387–407] is unnecessary. Here pk is the kth normalized mean curvature of the hypersurface Σ. As a special case, we also give some characterizations of geodesic spheres in ℝn, ℍn and [Formula: see text], which generalize the classical Alexandrov-type results.


Author(s):  
Yaohua Wang

In this paper, we will consider 4-dimensional manifolds with nonnegative scalar curvature and constant mean curvature (CMC) boundary. For compact manifolds with boundary, the influence of the nonnegativity of the region scalar curvature to the geometry of the boundary is considered. Some inequalities are established for manifolds with inner boundary and outer boundary. Even for compact manifolds without inner boundary, we can obtain some inequalities involving the geometric quantities of the boundary and give some obstruction. We also discuss the 4-dimensional asymptotically flat extension of the 3-dimensional Bartnik data with CMC boundary and provide the upper bound of the Bartnik mass.


2020 ◽  
Vol 63 (4) ◽  
pp. 909-920
Author(s):  
Yaning Wang

AbstractIn this paper we obtain some new characterizations of pseudo-Einstein real hypersurfaces in $\mathbb{C}P^{2}$ and $\mathbb{C}H^{2}$. More precisely, we prove that a real hypersurface in $\mathbb{C}P^{2}$ or $\mathbb{C}H^{2}$ with constant mean curvature is generalized ${\mathcal{D}}$-Einstein with constant coefficient if and only if it is pseudo-Einstein. We prove that a real hypersurface in $\mathbb{C}P^{2}$ with constant scalar curvature is generalized ${\mathcal{D}}$-Einstein with constant coefficient if and only if it is pseudo-Einstein.


1972 ◽  
Vol 45 ◽  
pp. 139-165 ◽  
Author(s):  
Joseph Erbacher

In a recent paper [2] Nomizu and Smyth have determined the hypersurfaces Mn of non-negative sectional curvature iso-metrically immersed in the Euclidean space Rn+1 or the sphere Sn+1 with constant mean curvature under the additional assumption that the scalar curvature of Mn is constant. This additional assumption is automatically satisfied if Mn is compact. In this paper we extend these results to codimension p isometric immersions. We determine the n-dimensional submanifolds Mn of non-negative sectional curvature isometrically immersed in the Euclidean Space Rn+P or the sphere Sn+P with constant mean curvature under the additional assumptions that Mn has constant scalar curvature and the curvature tensor of the connection in the normal bundle is zero. By constant mean curvature we mean that the mean curvature normal is paral lel with respect to the connection in the normal bundle. The assumption that Mn has constant scalar curvature is automatically satisfied if Mn is compact. The assumption on the normal connection is automatically sa tisfied if p = 2 and the mean curvature normal is not zero.


2015 ◽  
Vol 26 (02) ◽  
pp. 1550014 ◽  
Author(s):  
Uğur Dursun ◽  
Rüya Yeğin

We study submanifolds of hyperbolic spaces with finite type hyperbolic Gauss map. First, we classify the hyperbolic submanifolds with 1-type hyperbolic Gauss map. Then we prove that a non-totally umbilical hypersurface Mn with nonzero constant mean curvature in a hyperbolic space [Formula: see text] has 2-type hyperbolic Gauss map if and only if M has constant scalar curvature. We also classify surfaces with constant mean curvature in the hyperbolic space [Formula: see text] having 2-type hyperbolic Gauss map. Moreover we show that a horohypersphere in [Formula: see text] has biharmonic hyperbolic Gauss map.


2011 ◽  
Vol 54 (1) ◽  
pp. 67-75 ◽  
Author(s):  
QIN ZHANG

AbstractLet Mn be an n-dimensional closed hypersurface with constant mean curvature H satisfying |H| ≤ ϵ(n) in a unit sphere Sn+1(1), n ≤ 8 and S the square of the length of the second fundamental form of M. There exists a constant δ(n, H) > 0, which depends only on n and H such that if S0 ≤ S ≤ S0 + δ(n, H), then S ≡ S0 and M is isometric to a Clifford hypersurface, where ϵ(n) is a sufficiently small constant depending on n and $S_0=n+\frac{n^3}{2(n-1)}H^2+\frac{n(n-2)}{2(n-1)}\sqrt{n^2H^4+4(n-1)H^2}$.


Sign in / Sign up

Export Citation Format

Share Document