scholarly journals Melkersson conditions with respect to a prime ideal

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Takeshi Yoshizawa
Keyword(s):  
2020 ◽  
Vol 2 (2) ◽  
pp. 183
Author(s):  
Hisyam Ihsan ◽  
Muhammad Abdy ◽  
Samsu Alam B

Penelitian ini merupakan penelitian kajian pustaka yang bertujuan untuk mengkaji sifat-sifat submodul prima dan submodul prima lemah serta hubungan antara keduanya. Kajian dimulai dari definisi submodul prima dan submodul prima lemah, selanjutnya dikaji mengenai sifat-sifat dari keduanya. Pada penelitian ini, semua ring yang diberikan adalah ring komutatif dengan unsur kesatuan dan modul yang diberikan adalah modul uniter. Sebagai hasil dari penelitian ini diperoleh beberapa pernyataan yang ekuivalen, misalkan  suatu -modul ,  submodul sejati di  dan ideal di , maka ketiga pernyataan berikut ekuivalen, (1)  merupakan submodul prima, (2) Setiap submodul tak nol dari   -modul memiliki annihilator yang sama, (3) Untuk setiap submodul  di , subring  di , jika berlaku  maka  atau . Di lain hal, pada submodul prima lemah jika diberikan  suatu -modul,  submodul sejati di , maka pernyataan berikut ekuivalen, yaitu (1) Submodul  merupakan submodul prima lemah, (2) Untuk setiap , jika  maka . Selain itu, didapatkan pula hubungan antara keduanya, yaitu setiap submodul prima merupakan submodul prima lemah.Kata Kunci: Submodul Prima, Submodul Prima Lemah, Ideal Prima. This research is literature study that aims to examine the properties of prime submodules and weakly prime submodules and the relationship between  both of them. The study starts from the definition of prime submodules and weakly prime submodules, then reviewed about the properties both of them. Throughout this paper all rings are commutative with identity and all modules are unitary. As the result of this research, obtained several equivalent statements, let  be a -module,  be a proper submodule of  and  ideal of , then the following three statetments are equivalent, (1)  is a prime submodule, (2) Every nonzero submodule of   -module has the same annihilator, (3) For any submodule  of , subring  of , if  then  or . In other case, for weakly prime submodules, if given  is a unitary -module,  be a proper submodule of , then the following statements are equivalent, (1)  is a weakly prime submodule, (2) For any , if  then . In addition, also found the relationship between both of them, i.e. any prime submodule is weakly prime submodule.Keywords: Prime Submodules, Weakly Prime Submdules, Prime Ideal.


2019 ◽  
Vol 19 (04) ◽  
pp. 2050061
Author(s):  
Lorenzo Guerrieri

Let [Formula: see text] be a regular local ring of dimension [Formula: see text]. A local monoidal transform of [Formula: see text] is a ring of the form [Formula: see text], where [Formula: see text] is a regular parameter, [Formula: see text] is a regular prime ideal of [Formula: see text] and [Formula: see text] is a maximal ideal of [Formula: see text] lying over [Formula: see text] In this paper, we study some features of the rings [Formula: see text] obtained as infinite directed union of iterated local monoidal transforms of [Formula: see text]. In order to study when these rings are GCD domains, we also provide results in the more general setting of directed unions of GCD domains.


1982 ◽  
Vol 91 (2) ◽  
pp. 207-213 ◽  
Author(s):  
M. Herrmann ◽  
U. Orbanz

This note consists of some investigations about the condition ht(A) = l(A) where A is an ideal in a local ring and l(A) is the analytic spread of A (9).In (4) we proved the following: If R is a local ring and P a prime ideal such that R/P is regular then (under some technical assumptions) ht(P) = l(P) is equivalent to the equimultiplicity e(R) = e(RP). Also for a general ideal A (which need not be prime), the condition ht(A) = l(A) can be translated into an equality of certain multiplicities (see Theorem 0).


1988 ◽  
Vol 37 (3) ◽  
pp. 353-366 ◽  
Author(s):  
Valentina Barucci ◽  
David E. Dobbs ◽  
S.B. Mulay

This paper characterises the integral domains R with the property that R/P is integrally closed for each prime ideal P of R. It is shown that Dedekind domains are the only Noetherian domains with this property. On the other hand, each integrally closed going-down domain has this property. Related properties and examples are also studied.


1984 ◽  
Vol 25 (1) ◽  
pp. 27-30 ◽  
Author(s):  
Andy J. Gray

This note is devoted to giving a conceptually simple proof of the Invertible Ideal Theorem [1, Theorem 4·6], namely that a prime ideal of a right Noetherian ring R minimal over an invertible ideal has rank at most one. In the commutative case this result may be easily deduced from the Principal Ideal Theorem by localizing and observing that an invertible ideal of a local ring is principal. Our proof is partially analogous in that it utilizes the Rees ring (denned below) in order to reduce the theorem to the case of a prime ideal minimal over an ideal generated by a single central element, which can be easily dealt with by adapting the commutative argument in [8]. The reader is also referred to the papers of Jategaonkar on the subject [5, 6, 7], particularly the last where another proof of the theorem appears which yields some additional information.


2013 ◽  
Vol 38 ◽  
pp. 49-59
Author(s):  
MS Raihan

A convex subnearlattice of a nearlattice S containing a fixed element n?S is called an n-ideal. The n-ideal generated by a single element is called a principal n-ideal. The set of finitely generated principal n-ideals is denoted by Pn(S), which is a nearlattice. A distributive nearlattice S with 0 is called m-normal if its every prime ideal contains at most m number of minimal prime ideals. In this paper, we include several characterizations of those Pn(S) which form m-normal nearlattices. We also show that Pn(S) is m-normal if and only if for any m+1 distinct minimal prime n-ideals Po,P1,…., Pm of S, Po ? … ? Pm = S. DOI: http://dx.doi.org/10.3329/rujs.v38i0.16548 Rajshahi University J. of Sci. 38, 49-59 (2010)


1988 ◽  
Vol 56 (1) ◽  
pp. 185-197 ◽  
Author(s):  
J. Kaczorowski ◽  
W. Staś

Sign in / Sign up

Export Citation Format

Share Document