Fixed points of a generalized smoothing transformation and applications to the branching random walk

1998 ◽  
Vol 30 (1) ◽  
pp. 85-112 ◽  
Author(s):  
Quansheng Liu

Let {Ai : i ≥ 1} be a sequence of non-negative random variables and let M be the class of all probability measures on [0,∞]. Define a transformation T on M by letting Tμ be the distribution of ∑i=1∞AiZi, where the Zi are independent random variables with distribution μ, which are also independent of {Ai}. Under first moment assumptions imposed on {Ai}, we determine exactly when T has a non-trivial fixed point (of finite or infinite mean) and we prove that all fixed points have regular variation properties; under moment assumptions of order 1 + ε, ε > 0, we find all the fixed points and we prove that all non-trivial fixed points have stable-like tails. Convergence theorems are given to ensure that each non-trivial fixed point can be obtained as a limit of iterations (by T) with an appropriate initial distribution; convergence to the trivial fixed points δ0 and δ∞ is also examined, and a result like the Kesten-Stigum theorem is established in the case where the initial distribution has the same tails as a stable law. The problem of convergence with an arbitrary initial distribution is also considered when there is no non-trivial fixed point. Our investigation has applications in the study of: (a) branching processes; (b) invariant measures of some infinite particle systems; (c) the model for turbulence of Yaglom and Mandelbrot; (d) flows in networks and Hausdorff measures in random constructions; and (e) the sorting algorithm Quicksort. In particular, it turns out that the basic functional equation in the branching random walk always has a non-trivial solution.

1998 ◽  
Vol 30 (01) ◽  
pp. 85-112 ◽  
Author(s):  
Quansheng Liu

Let {Ai:i≥ 1} be a sequence of non-negative random variables and letMbe the class of all probability measures on [0,∞]. Define a transformationTonMby lettingTμ be the distribution of ∑i=1∞AiZi, where theZiare independent random variables with distribution μ, which are also independent of {Ai}. Under first moment assumptions imposed on {Ai}, we determine exactly whenThas a non-trivial fixed point (of finite or infinite mean) and we prove that all fixed points have regular variation properties; under moment assumptions of order 1 + ε, ε > 0, we findallthe fixed points and we prove that all non-trivial fixed points have stable-like tails. Convergence theorems are given to ensure that each non-trivial fixed point can be obtained as a limit of iterations (byT) with an appropriate initial distribution; convergence to the trivial fixed points δ0and δ∞is also examined, and a result like the Kesten-Stigum theorem is established in the case where the initial distribution has the same tails as a stable law. The problem of convergence with an arbitrary initial distribution is also considered when there is no non-trivial fixed point. Our investigation has applications in the study of: (a) branching processes; (b) invariant measures of some infinite particle systems; (c) the model for turbulence of Yaglom and Mandelbrot; (d) flows in networks and Hausdorff measures in random constructions; and (e) the sorting algorithm Quicksort. In particular, it turns out that the basic functional equation in the branching random walk always has a non-trivial solution.


2020 ◽  
Vol 57 (3) ◽  
pp. 811-831
Author(s):  
Peter Braunsteins ◽  
Sophie Hautphenne

AbstractWe consider a class of multitype Galton–Watson branching processes with a countably infinite type set $\mathcal{X}_d$ whose mean progeny matrices have a block lower Hessenberg form. For these processes, we study the probabilities $\textbf{\textit{q}}(A)$ of extinction in sets of types $A\subseteq \mathcal{X}_d$ . We compare $\textbf{\textit{q}}(A)$ with the global extinction probability $\textbf{\textit{q}} = \textbf{\textit{q}}(\mathcal{X}_d)$ , that is, the probability that the population eventually becomes empty, and with the partial extinction probability $\tilde{\textbf{\textit{q}}}$ , that is, the probability that all types eventually disappear from the population. After deriving partial and global extinction criteria, we develop conditions for $\textbf{\textit{q}} < \textbf{\textit{q}}(A) < \tilde{\textbf{\textit{q}}}$ . We then present an iterative method to compute the vector $\textbf{\textit{q}}(A)$ for any set A. Finally, we investigate the location of the vectors $\textbf{\textit{q}}(A)$ in the set of fixed points of the progeny generating vector.


1999 ◽  
Vol 36 (01) ◽  
pp. 139-145 ◽  
Author(s):  
Owen Dafydd Jones

Conditions are derived for the components of the normed limit of a multi-type branching process with varying environments, to be continuous on (0, ∞). The main tool is an inequality for the concentration function of sums of independent random variables, due originally to Petrov. Using this, we show that if there is a discontinuity present, then a particular linear combination of the population types must converge to a non-random constant (Equation (1)). Ensuring this can not happen provides the desired continuity conditions.


1967 ◽  
Vol 4 (2) ◽  
pp. 402-405 ◽  
Author(s):  
H. D. Miller

Let X(t) be the position at time t of a particle undergoing a simple symmetrical random walk in continuous time, i.e. the particle starts at the origin at time t = 0 and at times T1, T1 + T2, … it undergoes jumps ξ1, ξ2, …, where the time intervals T1, T2, … between successive jumps are mutually independent random variables each following the exponential density e–t while the jumps, which are independent of the τi, are mutually independent random variables with the distribution . The process X(t) is clearly a Markov process whose state space is the set of all integers.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Lee-Chae Jang ◽  
Dae San Kim ◽  
Taekyun Kim ◽  
Hyunseok Lee

The problem of counting derangements was initiated by Pierre Rémond de Montmort in 1708. A derangement is a permutation that has no fixed points, and the derangement number D n is the number of fixed point free permutations on an n element set. Furthermore, the derangement polynomials are natural extensions of the derangement numbers. In this paper, we study the derangement polynomials and numbers, their connections with cosine-derangement polynomials and sine-derangement polynomials, and their applications to moments of some variants of gamma random variables.


2002 ◽  
Vol 34 (2) ◽  
pp. 441-468 ◽  
Author(s):  
Luc Devroye ◽  
Ralph Neininger

An algorithm is developed for exact simulation from distributions that are defined as fixed points of maps between spaces of probability measures. The fixed points of the class of maps under consideration include examples of limit distributions of random variables studied in the probabilistic analysis of algorithms. Approximating sequences for the densities of the fixed points with explicit error bounds are constructed. The sampling algorithm relies on a modified rejection method.


2002 ◽  
Vol 34 (02) ◽  
pp. 441-468 ◽  
Author(s):  
Luc Devroye ◽  
Ralph Neininger

An algorithm is developed for exact simulation from distributions that are defined as fixed points of maps between spaces of probability measures. The fixed points of the class of maps under consideration include examples of limit distributions of random variables studied in the probabilistic analysis of algorithms. Approximating sequences for the densities of the fixed points with explicit error bounds are constructed. The sampling algorithm relies on a modified rejection method.


1970 ◽  
Vol 7 (01) ◽  
pp. 89-98
Author(s):  
John Lamperti

In the first part of this paper, we will consider a class of Markov chains on the non-negative integers which resemble the Galton-Watson branching process, but with one major difference. If there are k individuals in the nth “generation”, and are independent random variables representing their respective numbers of offspring, then the (n + 1)th generation will contain max individuals rather than as in the branching case. Equivalently, the transition matrices Pij of the chains we will study are to be of the form where F(.) is the probability distribution function of a non-negative, integervalued random variable. The right-hand side of (1) is thus the probability that the maximum of i independent random variables distributed by F has the value j. Such a chain will be called a “maximal branching process”.


2020 ◽  
Vol 24 ◽  
pp. 127-137
Author(s):  
Nadine Guillotin-Plantard ◽  
Françoise Pène ◽  
Martin Wendler

In this paper, we are interested in the asymptotic behaviour of the sequence of processes (Wn(s,t))s,t∈[0,1] with \begin{equation*} W_n(s,t):=\sum_{k=1}^{\lfloor nt\rfloor}\big(\mathds{1}_{\{\xi_{S_k}\leq s\}}-s\big) \end{equation*} where (ξx, x ∈ ℤd) is a sequence of independent random variables uniformly distributed on [0, 1] and (Sn)n ∈ ℕ is a random walk evolving in ℤd, independent of the ξ’s. In M. Wendler [Stoch. Process. Appl. 126 (2016) 2787–2799], the case where (Sn)n ∈ ℕ is a recurrent random walk in ℤ such that (n−1/αSn)n≥1 converges in distribution to a stable distribution of index α, with α ∈ (1, 2], has been investigated. Here, we consider the cases where (Sn)n ∈ ℕ is either: (a) a transient random walk in ℤd, (b) a recurrent random walk in ℤd such that (n−1/dSn)n≥1 converges in distribution to a stable distribution of index d ∈{1, 2}.


Sign in / Sign up

Export Citation Format

Share Document