Random bisection and evolutionary walks

2001 ◽  
Vol 38 (2) ◽  
pp. 582-596 ◽  
Author(s):  
Eric Bach

As models for molecular evolution, immune response, and local search algorithms, various authors have used a stochastic process called the evolutionary walk, which goes as follows. Assign a random number to each vertex of the infinite N-ary tree, and start with a particle on the root. A step of the process consists of searching for a child with a higher number and moving the particle there; if no such child exists, the process stops. The average number of steps in this process is asymptotic, as N → ∞, to log N, a result first proved by Macken and Perelson. This paper relates the evolutionary walk to a process called random bisection, familiar from combinatorics and number theory, which can be thought of as a transformed Poisson process. We first give a thorough treatment of the exact walk length, computing its distribution, moments and moment generating function. Next we show that the walk length is asymptotically normally distributed. We also treat it as a mixture of Poisson random variables and compute the asymptotic distribution of the Poisson parameter. Finally, we show that in an evolutionary walk with uniform vertex numbers, the ‘jumps’, ordered by size, have the same asymptotic distribution as the normalized cycle lengths in a random permutation.

2001 ◽  
Vol 38 (02) ◽  
pp. 582-596
Author(s):  
Eric Bach

As models for molecular evolution, immune response, and local search algorithms, various authors have used a stochastic process called the evolutionary walk, which goes as follows. Assign a random number to each vertex of the infinite N-ary tree, and start with a particle on the root. A step of the process consists of searching for a child with a higher number and moving the particle there; if no such child exists, the process stops. The average number of steps in this process is asymptotic, as N → ∞, to log N, a result first proved by Macken and Perelson. This paper relates the evolutionary walk to a process called random bisection, familiar from combinatorics and number theory, which can be thought of as a transformed Poisson process. We first give a thorough treatment of the exact walk length, computing its distribution, moments and moment generating function. Next we show that the walk length is asymptotically normally distributed. We also treat it as a mixture of Poisson random variables and compute the asymptotic distribution of the Poisson parameter. Finally, we show that in an evolutionary walk with uniform vertex numbers, the ‘jumps’, ordered by size, have the same asymptotic distribution as the normalized cycle lengths in a random permutation.


2010 ◽  
Vol 33 (7) ◽  
pp. 1127-1139
Author(s):  
Da-Ming ZHU ◽  
Shao-Han MA ◽  
Ping-Ping ZHANG

2021 ◽  
Vol 31 (1) ◽  
pp. 51-60
Author(s):  
Arsen L. Yakymiv

Abstract Dedicated to the memory of Alexander Ivanovich Pavlov. We consider the set of n-permutations with cycle lengths belonging to some fixed set A of natural numbers (so-called A-permutations). Let random permutation τ n be uniformly distributed on this set. For some class of sets A we find the asymptotics with remainder term for moments of total cycle number of τ n .


2008 ◽  
Vol 105 (40) ◽  
pp. 15253-15257 ◽  
Author(s):  
Mikko Alava ◽  
John Ardelius ◽  
Erik Aurell ◽  
Petteri Kaski ◽  
Supriya Krishnamurthy ◽  
...  

We study the performance of stochastic local search algorithms for random instances of the K-satisfiability (K-SAT) problem. We present a stochastic local search algorithm, ChainSAT, which moves in the energy landscape of a problem instance by never going upwards in energy. ChainSAT is a focused algorithm in the sense that it focuses on variables occurring in unsatisfied clauses. We show by extensive numerical investigations that ChainSAT and other focused algorithms solve large K-SAT instances almost surely in linear time, up to high clause-to-variable ratios α; for example, for K = 4 we observe linear-time performance well beyond the recently postulated clustering and condensation transitions in the solution space. The performance of ChainSAT is a surprise given that by design the algorithm gets trapped into the first local energy minimum it encounters, yet no such minima are encountered. We also study the geometry of the solution space as accessed by stochastic local search algorithms.


Sign in / Sign up

Export Citation Format

Share Document