scholarly journals Adenylyl cyclase-dependent axonal targeting in the olfactory system

Development ◽  
2007 ◽  
Vol 134 (13) ◽  
pp. 2481-2489 ◽  
Author(s):  
J. A. D. Col ◽  
T. Matsuo ◽  
D. R. Storm ◽  
I. Rodriguez
2019 ◽  
Author(s):  
Juan Yang ◽  
Liyan Qiu ◽  
Matthew Strobel ◽  
Amanda Kabel ◽  
Xiangming Zha ◽  
...  

AbstractAcids can disturb the ecosystem of wild animals through altering their olfaction and olfaction-related survival behaviors. It is known that the main olfactory epithelia (MOE) of mammals rely on odorant receptors and type III adenylyl cyclase (AC3) to detect general odorants. However, it is unknown how the olfactory system sense protons or acidic odorants. Here we show that the mouse MOE responded to acidic volatile stimuli in the presence and the absence of AC3. Acetic acid-induced electro-olfactogram (EOG) responses in wild type (WT) MOE can be dissected into two components: one dependent on the AC3-mediated cAMP pathway and the other not. MOE of AC3 knockout (KO) mice retained an acid-evoked EOG response but failed to respond to an odor mix. The acid-evoked responses of the AC3 KO could be blocked by diminazene, an inhibitor of acid-sensing ion channels (ASICs), but not by forskolin/IBMX, which desensitize the cAMP pathway. AC3 KO mice lost their sensitivity to detect pungent odorants but maintained sniffing behavior to acetic acid. Immunofluorescence staining demonstrated that ASIC1 proteins were highly expressed in olfactory sensory neurons (OSNs), mostly enriched in the knobs, dendrites, and somata, but not in olfactory cilia. Moreover, mice exhibited reduced preference to attractive objects when placed in an environment with acidic volatiles. Together, we conclude that the mouse olfactory system has a non-conventional, ASICs-mediated mechanism for acid-sensing. Acid stimulation of ASICs may unselectively depolarize different OSNs and interfere with the anatomical logic for odor perception.


Author(s):  
James E. Crandall ◽  
Linda C. Hassinger ◽  
Gerald A. Schwarting

Cell surface glycoconjugates are considered to play important roles in cell-cell interactions in the developing central nervous system. We have previously described a group of monoclonal antibodies that recognize defined carbohydrate epitopes and reveal unique temporal and spatial patterns of immunoreactivity in the developing main and accessory olfactory systems in rats. Antibody CC2 reacts with complex α-galactosyl and α-fucosyl glycoproteins and glycolipids. Antibody CC1 reacts with terminal N-acetyl galactosamine residues of globoside-like glycolipids. Antibody 1B2 reacts with β-galactosyl glycolipids and glycoproteins. Our light microscopic data suggest that these antigens may be located on the surfaces of axons of the vomeronasal and olfactory nerves as well as on some of their target neurons in the main and accessory olfactory bulbs.


2019 ◽  
Author(s):  
Bella Grigorenko ◽  
Igor Polyakov ◽  
Alexander Nemukhin

<p>We report a mechanism of adenosine triphosphate (ATP) to cyclic adenosine monophosphate (cAMP) conversion by the mammalian type V adenylyl cyclase revealed in molecular dynamics (MD) and quantum mechanics/molecular mechanics (QM/MM) simulations. We characterize a set of computationally derived enzyme-substrate (ES) structures showing an important role of coordination shells of magnesium ions in the solvent accessible active site. Several stable six-fold coordination shells of Mg<sub>A</sub><sup>2+ </sup>are observed in MD simulations of ES complexes. In the lowest energy ES conformation, the coordination shell of Mg<sub>A</sub><sup>2+ </sup>does not include the O<sub>δ1</sub> atom of the conserved Asp440 residue. Starting from this conformation, a one-step reaction mechanism is characterized which includes proton transfer from the ribose O<sup>3'</sup>H<sup>3' </sup>group in ATP to Asp440 via a shuttling water molecule and P<sup>A</sup>-O<sup>3A</sup> bond cleavage and O<sup>3'</sup>-P<sup>A</sup> bond formation. The energy profile of this route is consistent with the observed reaction kinetics. In a higher energy ES conformation, Mg<sub>A</sub><sup>2+</sup> is bound to the O<sub>δ1</sub>(Asp440) atom as suggested in the relevant crystal structure of the protein with a substrate analog. The computed energy profile initiated by this ES is characterized by higher energy expenses to complete the reaction. Consistently with experimental data, we show that the Asp440Ala mutant of the enzyme should exhibit a reduced but retained activity. All considered reaction pathways include proton wires from the O<sup>3'</sup>H<sup>3' </sup>group via shuttling water molecules. </p>


Sign in / Sign up

Export Citation Format

Share Document