scholarly journals The role of Dpp and Wg in compensatory proliferation and in the formation of hyperplastic overgrowths caused by apoptotic cells in the Drosophila wing disc

Development ◽  
2009 ◽  
Vol 136 (7) ◽  
pp. 1169-1177 ◽  
Author(s):  
A. Perez-Garijo ◽  
E. Shlevkov ◽  
G. Morata
Development ◽  
1999 ◽  
Vol 126 (5) ◽  
pp. 975-985 ◽  
Author(s):  
R. Nagaraj ◽  
A.T. Pickup ◽  
R. Howes ◽  
K. Moses ◽  
M. Freeman ◽  
...  

Growth and patterning of the Drosophila wing disc depends on the coordinated expression of the key regulatory gene vestigial both in the Dorsal-Ventral (D/V) boundary cells and in the wing pouch. We propose that a short-range signal originating from the core of the D/V boundary cells is responsible for activating EGFR in a zone of organizing cells on the edges of the D/V boundary. Using loss-of-function mutations and ectopic expression studies, we show that EGFR signaling is essential for vestigial transcription in these cells and for making them competent to undergo subsequent vestigial-mediated proliferation within the wing pouch.


Genetics ◽  
2006 ◽  
Vol 174 (4) ◽  
pp. 1973-1982 ◽  
Author(s):  
Thomas L. Jacobsen ◽  
Donna Cain ◽  
Litty Paul ◽  
Steven Justiniano ◽  
Anwar Alli ◽  
...  

2008 ◽  
Vol 24 (16) ◽  
pp. i234-i240 ◽  
Author(s):  
A. Gonzalez ◽  
C. Chaouiya ◽  
D. Thieffry

eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Stefan Harmansa ◽  
Ilaria Alborelli ◽  
Dimitri Bieli ◽  
Emmanuel Caussinus ◽  
Markus Affolter

The role of protein localization along the apical-basal axis of polarized cells is difficult to investigate in vivo, partially due to lack of suitable tools. Here, we present the GrabFP system, a collection of four nanobody-based GFP-traps that localize to defined positions along the apical-basal axis. We show that the localization preference of the GrabFP traps can impose a novel localization on GFP-tagged target proteins and results in their controlled mislocalization. These new tools were used to mislocalize transmembrane and cytoplasmic GFP fusion proteins in the Drosophila wing disc epithelium and to investigate the effect of protein mislocalization. Furthermore, we used the GrabFP system as a tool to study the extracellular dispersal of the Decapentaplegic (Dpp) protein and show that the Dpp gradient forming in the lateral plane of the Drosophila wing disc epithelium is essential for patterning of the wing imaginal disc.


Development ◽  
1993 ◽  
Vol 118 (2) ◽  
pp. 427-438 ◽  
Author(s):  
R.G. Phillips ◽  
J.R. Whittle

We have used conditional wingless genotypes to dissect the role of this gene in late stages of wing disc development. One of these genotypes (wgIL/wg-lacZ) is simultaneously a reporter of wingless transcription and temperature-sensitive for wingless function, and has allowed us to define its pattern of transcription in the absence of wingless activity. The primordia of a subset of the bristles of the notum, which develop in or immediately adjacent to wingless-expressing cells, depend upon wingless activity. The time-course of this contribution and the effect on proneural gene expression together suggest that wingless may regulate the activity of products of the achaete-scute complex in proneural clusters. wingless activity is also required at the presumptive wing margin and is a necessary precondition for the change in proliferation pattern in this region. The involvement of wingless in transducing or mediating positional signals for spatial patterning in imaginal disc development is discussed.


Author(s):  
J.S. Ryerse

Gap junctions are intercellular junctions found in both vertebrates and invertebrates through which ions and small molecules can pass. Their distribution in tissues could be of critical importance for ionic coupling or metabolic cooperation between cells or for regulating the intracellular movement of growth control and pattern formation factors. Studies of the distribution of gap junctions in mutants which develop abnormally may shed light upon their role in normal development. I report here the distribution of gap junctions in the wing pouch of 3 Drosophila wing disc mutants, vg (vestigial) a cell death mutant, 1(2)gd (lethal giant disc) a pattern abnormality mutant and 1(2)gl (lethal giant larva) a neoplastic mutant and compare these with wildtype wing discs.The wing pouch (the anlagen of the adult wing blade) of a wild-type wing disc is shown in Fig. 1 and consists of columnar cells (Fig. 5) joined by gap junctions (Fig. 6). 14000x EMs of conventionally processed, UA en bloc stained, longitudinally sectioned wing pouches were enlarged to 45000x with a projector and tracings were made on which the lateral plasma membrane (LPM) and gap junctions were marked.


Sign in / Sign up

Export Citation Format

Share Document