adult wing
Recently Published Documents


TOTAL DOCUMENTS

49
(FIVE YEARS 9)

H-INDEX

11
(FIVE YEARS 1)

2021 ◽  
Vol 12 ◽  
Author(s):  
Fengchao Zhang ◽  
Yao Chen ◽  
Jie Shen ◽  
Junzheng Zhang

Notch signaling pathway plays crucial roles in animal development. Protein ubiquitination contributes to Notch signaling regulation by governing the stability and activity of major signaling components. Studies in Drosophila have identified multiple ubiquitin ligases and deubiquitinating enzymes that modify Notch ligand and receptor proteins. The fate of ubiquitinated substrates depend on topologies of the attached ubiquitin chains, which are determined by the ubiquitin conjugating enzymes (E2 enzymes). However, which E2 enzymes participate in Notch signal transduction remain elusive. Here, we report that the E2 enzyme UbcD1 is required for Notch signaling activation during Drosophila wing development. Mutations of UbcD1 lead to marginal nicks in the adult wing and reduction of Notch signaling targets expression in the wing imaginal disc. Genetic analysis reveal that UbcD1 functions in the signaling receiving cells prior to cleavage of the Notch protein. We provide further evidence suggesting that UbcD1 is likely involved in endocytic trafficking of Notch protein. Our results demonstrate that UbcD1 positively regulates Notch signaling and thus reveal a novel role of UbcD1 in development.


Author(s):  
Ana López-Varea ◽  
Cristina M Ostalé ◽  
Patricia Vega-Cuesta ◽  
Ana Ruiz-Gómez ◽  
María F Organista ◽  
...  

Abstract We have screened a collection of UAS-RNAi lines targeting 10920 Drosophila protein-coding genes for phenotypes in the adult wing. We identified 3653 genes (33%) whose knock-down causes either larval/pupal lethality or a mutant phenotype affecting the formation of a normal wing. The most frequent phenotypes consist in changes in wing size, vein differentiation and patterning, defects in the wing margin and in the apposition of the dorsal and ventral wing surfaces. We also defined 16 functional categories encompassing the most relevant aspect of each protein function, and assigned each Drosophila gene to one of these functional groups. This allowed us to identify which mutant phenotypes are enriched within each functional group. Finally, we used previously published gene expression datasets to determine which genes are or are not expressed in the wing disc. Integrating expression, phenotypic and molecular information offers considerable precision to identify the relevant genes affecting wing formation and the biological processes regulated by them.


ZooKeys ◽  
2021 ◽  
Vol 1055 ◽  
pp. 55-67
Author(s):  
Yongxiang Hou ◽  
Hideyuki Chiba ◽  
Lijuan Zhu ◽  
Zhou Chang ◽  
Lijun Ma ◽  
...  

Molecular phylogenetic analysis indicates that the genus Carterocephalus is not monophyletic. Based on combined molecular and morphological evidence, we propose a new genus, Pulchroptera Hou, Fan & Chiba, gen. nov., for Pamphila pulchra Leech, 1891. The adult, wing venation, and male genitalia of Pulchroptera pulchracomb. nov., Carterocephalus palaemon, and related genera are illustrated.


2021 ◽  
Author(s):  
Takuya Akiyama ◽  
Chris W. Seidel ◽  
Matthew C. Gibson

AbstractThe Drosophila BMP 2/4 homologue Decapentaplegic (Dpp) acts as a morphogen to regulate diverse developmental processes, including wing morphogenesis. Transcriptional feedback regulation of this pathway ensures tightly controlled signaling outputs to generate the precise pattern of the adult wing. Nevertheless, few direct Dpp target genes have been explored and our understanding of feedback regulation remains incomplete. Here, we employ transcriptional profiling following dpp conditional knockout to identify nord, a novel Dpp/BMP feedback regulator. Nord mutants generated by CRISPR/Cas9 mutagenesis produce a smaller wing and display low penetrance venation defects. At the molecular level, nord encodes a heparin-binding protein and we show that its overexpression is sufficient to antagonize Dpp/BMP signaling. Further, we demonstrate that Nord physically and genetically interacts with the Dpp/BMP co-receptor Dally. In sum we propose that Nord acts with Dally to fine tune Dpp/BMP signaling, with implications for both developmental and disease models.Impact statementFunctional analyses of the Drosophila homologue of Neuron Derived Neurotrophic Factor reveal a new mode of extracellular heparan sulfate proteoglycan regulation required for proper morphogen action.


2020 ◽  
Author(s):  
Katrin Strassburger ◽  
Marilena Lutz ◽  
Sandra Müller ◽  
Aurelio A. Teleman

AbstractCells in a developing organ stop proliferating when the organ reaches a correct, final size. The underlying mechanisms are not understood. Although many signaling pathways and cell cycle components are required to sustain cell proliferation, which one of these turns off to terminate proliferation is not known. Here we study proliferation termination using Drosophila wing discs. We extend larval development to provide wing discs a constant growth-sustaining environment, allowing them to terminate proliferation autonomously. We find that the wing pouch, which forms the adult wing blade, terminates proliferation in the absence of brinker or warts, indicating that neither Dpp signaling nor Hippo/Yorkie signaling control final wing size. Instead, termination of proliferation coincides with reduced TORC1 activity and is bypassed by reactivating TORC1. Hence proliferation ceases due to reduced cell growth. Experimental manipulation of Dpp or Yki signaling can bypass proliferation termination in hinge and notum regions, suggesting that the mechanisms regulating proliferation termination may be distinct in different regions of the disc.One Sentence SummaryUsing Drosophila, Strassburger et al. investigate the termination of proliferation of an organ when it reaches its final size, and show this occurs due to a drop in TORC1 signaling.


2019 ◽  
Vol 9 (10) ◽  
pp. 3087-3100 ◽  
Author(s):  
Michael D. Rotelli ◽  
Anna M. Bolling ◽  
Andrew W. Killion ◽  
Abraham J. Weinberg ◽  
Michael J. Dixon ◽  
...  

Cell division and tissue growth must be coordinated with development. Defects in these processes are the basis for a number of diseases, including developmental malformations and cancer. We have conducted an unbiased RNAi screen for genes that are required for growth in the Drosophila wing, using GAL4-inducible short hairpin RNA (shRNA) fly strains made by the Drosophila RNAi Screening Center. shRNA expression down the center of the larval wing disc using dpp-GAL4, and the central region of the adult wing was then scored for tissue growth and wing hair morphology. Out of 4,753 shRNA crosses that survived to adulthood, 18 had impaired wing growth. FlyBase and the new Alliance of Genome Resources knowledgebases were used to determine the known or predicted functions of these genes and the association of their human orthologs with disease. The function of eight of the genes identified has not been previously defined in Drosophila. The genes identified included those with known or predicted functions in cell cycle, chromosome segregation, morphogenesis, metabolism, steroid processing, transcription, and translation. All but one of the genes are similar to those in humans, and many are associated with disease. Knockdown of lin-52, a subunit of the Myb-MuvB transcription factor, or βNACtes6, a gene involved in protein folding and trafficking, resulted in a switch from cell proliferation to an endoreplication growth program through which wing tissue grew by an increase in cell size (hypertrophy). It is anticipated that further analysis of the genes that we have identified will reveal new mechanisms that regulate tissue growth during development.


Zootaxa ◽  
2019 ◽  
Vol 4555 (3) ◽  
pp. 301
Author(s):  
GA-EUN LEE ◽  
JAMES E. HAYDEN

Calliprora leucaenae sp. nov. is described infesting foliage of Leucaena leucocephala (Lam.) de Wit. in Florida, USA. The larvae are blotch-miners and leaf-tiers and are capable of heavy damage to host plants. Photographs of the adult, wing venation, male and female genitalia and illustrations of the larval and pupal chaetotaxy are provided. Calliprora Meyrick is transferred to Thiotrichinae, as the species in the genus exhibit typical characters of the subfamily such as the presence of anellus lobes, a large sternum VIII, and a reduced male tergum VIII. Comparative diagnoses of the morphology and ecology are presented for the newly described species and other thiotrichine species.


2019 ◽  
Vol 70 (1) ◽  
pp. 43-54
Author(s):  
Dubi Benyamini ◽  
Peter Russell

The life history and host-plants of two populations of Melitaea arduinna from Israel are described and illustrated. Their final instar larvae, adult wing morphology and wingspans are compared with those of the same species from Russia, the Caucasus and the Balkans. The taxonomic position of the Levant populations is discussed.


2018 ◽  
Vol 5 (1) ◽  
pp. 61-73 ◽  
Author(s):  
Micah G. Freedman ◽  
Hugh Dingle

Abstract Monarch butterfly wing morphology varies substantially throughout their global range, both between resident and migratory populations and also within the migratory North American population. Here, we use a dataset comprising more than 1800 North American individuals collected between 1878-2017 to characterize the factors shaping continent-wide patterns of wing morphological variation. North American overwintering butterflies have forewings that are approximately 4.4% larger than those collected in summer breeding areas. Monarchs overwintering in Mexico have forewings that are approximately 1.8% larger than monarchs overwintering in California, conducive to the idea that migration distance is positively correlated with wing area. We find evidence for a latitudinal cline within North America, such that butterflies collected at higher latitudes have significantly larger and more elongated forewings. We also find a significant increase of approximately 4.9% in forewing area between 1878-2017, but no difference through time in wing elongation. This result is corroborated by a reanalysis of a recently published dataset of more than 600 butterflies from Mexican overwintering sites. We discuss possible reasons for this increase in wing size through time, including northward shifts in the monarch’s breeding range and changes in relative abundance of milkweed hosts, and present experimental data addressing the influence of larval host plant on adult wing morphology. Our analysis suggests that (1) migration is indeed an important selective force for monarch wing morphology; (2) wing size has increased through time in North America; (3) factors such as host plant identity must be considered to fully understand monarch wing morphological variation.


Sign in / Sign up

Export Citation Format

Share Document