scholarly journals Induction and repression of mammalian achaete-scute homologue (MASH) gene expression during neuronal differentiation of P19 embryonal carcinoma cells

Development ◽  
1992 ◽  
Vol 114 (1) ◽  
pp. 75-87 ◽  
Author(s):  
J.E. Johnson ◽  
K. Zimmerman ◽  
T. Saito ◽  
D.J. Anderson

MASH1 and MASH2, mammalian homologues of the Drosophila neural determination genes achaete-scute, are members of the basic helix-loop-helix (bHLH) family of transcription factors. We show here that murine P19 embryonal carcinoma cells can be used as a model system to study the regulation and function of these genes. MASH1 and MASH2 display complementary patterns of expression during the retinoic-acid-induced neuronal differentiation of P19 cells. MASH1 mRNA is undetectable in undifferentiated P19 cells but is induced to high levels by retinoic acid coincident with neuronal differentiation. In contrast, MASH2 mRNA is expressed in undifferentiated P19 cells and is repressed by retinoic acid treatment. These complementary expression patterns suggest distinct functions for MASH1 and MASH2 in development, despite their sequence homology. In retinoic-acid-treated P19 cells, MASH1 protein expression precedes and then overlaps expression of neuronal markers. However, MASH1 is expressed by a smaller proportion of cells than expresses such markers. MASH1 immunoreactivity is not detected in differentiated cells displaying a neuronal morphology, suggesting that its expression is transient. These features of MASH1 expression are similar to those observed in vivo, and suggest that P19 cells represent a good model system in which to study the regulation of this gene. Forced expression of MASH1 was achieved in undifferentiated P19 cells by transfection of a cDNA expression construct. The transfected cells expressing exogenous MASH1 protein contained E-box-binding activity that could be super-shifted by an anti-MASH1 antibody, but exhibited no detectable phenotypic changes. Thus, unlike myogenic bHLH genes, such as MyoD, which are sufficient to induce muscle differentiation, expression of MASH1 appears insufficient to promote neurogenesis.

1989 ◽  
Vol 9 (3) ◽  
pp. 1357-1361
Author(s):  
E Schuuring ◽  
L van Deemter ◽  
H Roelink ◽  
R Nusse

In mouse embryos, the int-1 proto-oncogene is transiently expressed in areas of the developing neural system. Retinoic acid-treated P19 embryonal carcinoma cells have often been used as an in vitro model for the molecular basis of neural development. We shown here that int-1 is transiently expressed in differentiated P19 cells. The time course and retinoic acid dose dependence of int-1 expression suggest that the gene is specifically expressed during early neural differentiation. P19 cells may be a useful model to assist in the study, at the cellular level, of the role of int-1 in neural development.


1989 ◽  
Vol 9 (3) ◽  
pp. 1357-1361 ◽  
Author(s):  
E Schuuring ◽  
L van Deemter ◽  
H Roelink ◽  
R Nusse

In mouse embryos, the int-1 proto-oncogene is transiently expressed in areas of the developing neural system. Retinoic acid-treated P19 embryonal carcinoma cells have often been used as an in vitro model for the molecular basis of neural development. We shown here that int-1 is transiently expressed in differentiated P19 cells. The time course and retinoic acid dose dependence of int-1 expression suggest that the gene is specifically expressed during early neural differentiation. P19 cells may be a useful model to assist in the study, at the cellular level, of the role of int-1 in neural development.


2014 ◽  
Vol 74 (12) ◽  
pp. 1243-1254 ◽  
Author(s):  
Rocío Jiménez Alfonso ◽  
Irantzu Gorroño-Etxebarria ◽  
Miriam Rabano ◽  
Maria dM. Vivanco ◽  
Robert Kypta

Sign in / Sign up

Export Citation Format

Share Document